Background Because flavonoids and trichomes play crucial roles in plant defence, their formation requires fine transcriptional control by multiple transcription factor families. However, little is known regarding the mechanism of the R2R3-MYB transcription factors that regulate both flavonoid metabolism and trichome development. Results Here, we identified a unique SG4-like-MYB TF from Tartary buckwheat, FtMYB8 , which harbours the C2 repression motif and an additional TLLLFR repression motif. The expression profiles of FtMYB8 combined with the transcriptional activity of P FtMYB8 promoter showed that FtMYB8 mRNA mainly accumulated in roots during the true leaf stage and flowering stage and in bud trichomes and flowers, and the expression of this gene was markedly induced by MeJA, ABA and UV-B treatments but repressed by dark treatment. Overexpression of FtMYB8 in Arabidopsis reduces the accumulation of anthocyanin/proanthocyanidin by specifically inhibiting TT12 expression, which may depend on the interaction between FtMYB8 and TT8. Interestingly, this interaction may also negatively regulate the marginal trichome initiation in Arabidopsis leaves. Conclusions Taken together, our results suggest that FtMYB8 may fine-tune the accumulation of anthocyanin/proanthocyanidin in the roots and flowers of Tartary buckwheat by balancing the inductive effects of transcriptional activators, and probably regulate trichome distribution in the buds of Tartary buckwheat. Electronic supplementary material The online version of this article (10.1186/s12870-019-1876-x) contains supplementary material, which is available to authorized users.
Breeding for flower cold resistance is a priority for flower breeding research in northern China. The identification of cold resistance genes will not only provide genetic resources for cold resistance breeding, but also form a basis for the study of plant cold resistance mechanisms.• Based on the flower transcriptome of Iris laevigata, 20 R2R3-MYBs were identified and comprehensive analysis, including conservative domain, phylogenetic analyses and functional distribution, were performed for R2R3-MYBs. Expression patterns of the abiotic stress genes under cold stress were detected, the upregulated gene was genetically transformed into tobacco, and the related physiological indicators of the transgenic tobacco were measured.• A novel cold resistance gene, IlMYB306, was obtained. qRT-PCR indicated that IlMYB306 was dramatically induced by cold stress and was significantly upregulated in roots. The free proline content, MDA, SOD and POD activity of the transgenic tobacco improved after cold stress, and the chlorophyll content decreased slowly. In addition, overexpression of IlMYB306 improved cold resistance of the seeds. SEM results showed leaves of transgenic tobacco had obvious folds, more grooves and bulges on the lower leaf surface.• Overall, we report a novel cold resistance R2R3-MYB gene, IlMYB306, in the flower of I. laevigata, which could improve tobacco cold stress tolerance by thickening the waxy layer, increasing antioxidant activity and the content of proline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.