The topological phases of matter are characterized using the Berry phase, a geometrical phase, associated with the energy-momentum band structure. The quantization of the Berry phase, and the associated wavefunction polarization, manifest themselves as remarkably robust physical observables, such as quantized Hall conductivity and disorder-insensitive photonic transport. Recently, a novel class of topological phases, called higher-order topological phases, were proposed by generalizing the fundamental relationship between the Berry phase and the quantized polarization, from dipole to multipole moments [1][2][3][4]. Here, we demonstrate the first photonic realization of the quantized quadrupole topological phase, using silicon photonics. In this 2nd-order topological phase, the quantization of the bulk quadrupole moment in a two-dimensional system manifests as topologically robust corner states. We unambiguously show the presence of localized corner states and establish their robustness against certain defects. Furthermore, we contrast these topological states against topologically-trivial corner states, in a system without bulk quadrupole moment, and observe no robustness. Our photonic platform could enable the development of robust on-chip classical and quantum optical devices with higher-order topological protection. arXiv:1812.09304v2 [physics.optics]
In this work we introduce two code families, which we call the heavy hexagon code and heavy square code. Both code families are implemented by assigning physical data and ancilla qubits to both vertices and edges of low degree graphs. Such a layout is particularly suitable for superconducting qubit architectures to minimize frequency collision and crosstalk. In some cases, frequency collisions can be reduced by several orders of magnitude. The heavy hexagon code is a hybrid surface/Bacon-Shor code mapped onto a (heavy) hexagonal lattice whereas the heavy square code is the surface code mapped onto a (heavy) square lattice. In both cases, the lattice includes all the ancilla qubits required for fault-tolerant error-correction. Naively, the limited qubit connectivity might be thought to limit the error-correcting capability of the code to less than its full distance. Therefore, essential to our construction is the use of flag qubits. We modify minimum weight perfect matching decoding to effciently and scalably incorporate information from measurements of the flag qubits and correct up to the full code distance while respecting the limited connectivity. Simulations show that high threshold values for both codes can be obtained using our decoding protocol. Further, our decoding scheme can be adapted to other topological code families.
There has been recent progress in understanding chaotic features in many-body quantum systems. Motivated by the scrambling of information in black holes, it has been suggested that the time dependence of out-of-timeordered (OTO) correlation functions such as O 2 (t)O 1 (0)O 2 (t)O 1 (0) is a faithful measure of quantum chaos. Experimentally, these correlators are challenging to access since they apparently require access to both forward and backward time evolution with the system Hamiltonian. Here, we propose a protocol to measure such OTO correlators using an ancilla which controls the direction of time. Specifically, by coupling the state of ancilla to the system Hamiltonian of interest, we can emulate the forward and backward time propagation, where the ancilla plays the role of a 'quantum clock'. Within this scheme, the continuous evolution of the entire system (the system of interest and the ancilla) is governed by a time-independent Hamiltonian. Our protocol is immune to errors that could occur when the direction of time evolution is externally controlled by a classical switch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.