Plasma cells are of crucial importance for long-term immune protection. It is thought that long-lived plasma cells survive in specialized niches in the bone marrow. Here we demonstrate that bone marrow eosinophils localized together with plasma cells and were the key providers of plasma cell survival factors. In vitro, eosinophils supported the survival of plasma cells by secreting the proliferation-inducing ligand APRIL and interleukin-6 (IL-6). In eosinophil-deficient mice, plasma cell numbers were much lower in the bone marrow both at steady state and after immunization. Reconstitution experiments showed that eosinophils were crucial for the retention of plasma cells in the bone marrow. Moreover, depletion of eosinophils induced apoptosis in long-lived bone marrow plasma cells. Our findings demonstrate that the long-term maintenance of plasma cells in the bone marrow requires eosinophils.
Structures resembling germinal centers are seen in the salivary glands of patients with Sjögren's syndrome, but it is not known whether the microenvironment of these cell clusters is sufficient for the induction of a germinal center response. Therefore, we cloned and sequenced rearranged
Objective. Elevated levels of BAFF and APRIL are characteristic of patients with systemic lupus erythematosus (SLE). The reasons for enhanced cytokine production are not well understood. This study was undertaken to identify the cells responsible for the overproduction of these cytokines.Methods. BAFF expression was analyzed on peri-
Preterm neonates are exposed to extrauterine environmental Ags during the time period that corresponds to the last trimester of normal intrauterine development. To study whether this precocious exposure to Ags accelerates the Ig repertoire diversification, we compared IgH chain genes of preterm neonates (gestational age, 25–29 wk) during their first postnatal months with those of term neonates. Preterm infants approaching their expected date of delivery after 8–13 wk of extrauterine life used a similar VH, DH, and JH gene segment repertoire as term neonates born after intrauterine development. Furthermore, the length increase of the NDN region between VH and JH by 0.25 nt per gestational week (r = 0.556, p < 0.0001) was not accelerated. Thus, the generation of the VH region gene repertoire is developmentally controlled and independent of environmental influences. However, exposure to extrauterine Ags induced class switch and somatic mutations in IgH chain genes within 2 wk after premature birth and IgG transcript diversity and mutational frequency increased with the duration of extrauterine life. Three-month-old preterm infants expressed a heterogeneous IgG repertoire at their expected date of delivery with VH region genes carrying significant numbers of somatic mutations with evidence for Ag selection. Term neonates, however, had no such IgG repertoire. We conclude that restrictions in the neonatal Ig VH region gene repertoire persist until term despite exposure to environmental Ags. Yet, many weeks before term the immune system of the preterm neonate can already support germinal center reactions in response to environmental Ags.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.