We systematically measured the dc voltage V(ISH) induced by spin pumping together with the inverse spin Hall effect in ferromagnet-platinum bilayer films. In all our samples, comprising ferromagnetic 3d transition metals, Heusler compounds, ferrite spinel oxides, and magnetic semiconductors, V(ISH) invariably has the same polarity, and scales with the magnetization precession cone angle. These findings, together with the spin mixing conductance derived from the experimental data, quantitatively corroborate the present theoretical understanding of spin pumping in combination with the inverse spin Hall effect.
We have studied experimentally the excitation of propagating spin-wave modes of a microscopic Permalloy-film waveguide by a stripe antenna. We show that due to the strong quantization of the spin-wave spectrum, the excitation of particular modes has essentially different frequency dependencies leading to a nonmonotonous variation of the modulation depth of the resulting spin-wave beam as a function of the excitation frequency. In addition, we address the effect of nonreciprocity of spin-wave excitation and found that for the case of Permalloy microwaveguides this effect is much weaker pronounced than for waveguides made from dielectric magnetic films with low saturation magnetization.
With the recent development in nanoscale patterning techniques, the potential of practical applications of nanometer-size structures for signal processing has been growing continuously. Experimental findings on the manipulation of optical signals in nanostructures have recently given rise to a widely addressed scientific area—subwavelength nano-optics. Here, we demonstrate that spin waves in microscopic ferromagnetic film structures represent a superb object for realization of the principles of nano-optics in the microwave frequency range. We show experimentally that by using the unique properties of spin waves, one can easily channelize, split, and manipulate submicrometer-width spin-wave beams propagating in microscopic magnetic-film waveguides.
We fabricated NiFe 2 O 4 thin films on MgAl 2 O 4 (001) substrates by reactive dc magnetron co-sputtering in a pure oxygen atmosphere at different substrate temperatures. The film properties were investigated by various techniques with a focus on their structure, surface topography, magnetic characteristics, and transport properties. Structural analysis revealed a good crystallization with epitaxial growth and low roughness and a similar quality as in films grown by pulsed laser deposition. Electrical conductivity measurements showed high room temperature resistivity (12 Ωm), but low activation energy, indicating an extrinsic transport mechanism. A band gap of about 1.55 eV was found by optical spectroscopy. Detailed x-ray spectroscopy studies confirmed the samples to be ferrimagnetic with fully compensated Fe moments. By comparison with multiplet calculations of the spectra we found that the cation valencies are to a large extent Ni 2+ and Fe 3+ .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.