We experimentally investigate and quantitatively analyze the spin Hall magnetoresistance effect in ferromagnetic insulator/platinum and ferromagnetic insulator/nonferromagnetic metal/platinum hybrid structures. For the ferromagnetic insulator, we use either yttrium iron garnet, nickel ferrite, or magnetite and for the nonferromagnet, copper or gold. The spin Hall magnetoresistance effect is theoretically ascribed to the combined action of spin Hall and inverse spin Hall effect in the platinum metal top layer. It therefore should characteristically depend upon the orientation of the magnetization in the adjacent ferromagnet and prevail even if an additional, nonferromagnetic metal layer is inserted between Pt and the ferromagnet. Our experimental data corroborate these theoretical conjectures. Using the spin Hall magnetoresistance theory to analyze our data, we extract the spin Hall angle and the spin diffusion length in platinum. For a spin-mixing conductance of 4 × 10 14 −1 m −2 , we obtain a spin Hall angle of 0.11 ± 0.08 and a spin diffusion length of (1.5 ± 0.5) nm for Pt in our thin-film samples.
The spin polarization of Pt in Pt/NiFe2O4 and Pt/Fe bilayers is studied by interface-sensitive x-ray resonant magnetic reflectivity to investigate static magnetic proximity effects. The asymmetry ratio of the reflectivity was measured at the Pt L3 absorption edge using circular polarized x-rays for opposite directions of the magnetization at room temperature. The results of the 2% asymmetry ratio for Pt/Fe bilayers are independent of the Pt thickness between 1.8 and 20 nm. By comparison with ab initio calculations, the maximum magnetic moment per spin polarized Pt atom at the interface is determined to be (0.6 ± 0.1) µB for Pt/Fe. For Pt/NiFe2O4 the asymmetry ratio drops below the sensitivity limit of 0.02 µB per Pt atom. Therefore, we conclude, that the longitudinal spin Seebeck effect recently observed in Pt/NiFe2O4 is not influenced by a proximity induced anomalous Nernst effect. In spintronics1 and spin caloritronics 2 pure spin currents can be generated in ferromagnetic insulators (FMIs) by spin pumping 3 , the spin Hall effect 4 and the spin Seebeck effect 5 . Since these spin currents play an important role in spintronic applications, an understanding of the generation, manipulation and detection of spin currents is an important topic of research. A common spin current detection technique uses a nonferromagnetic metal (NM) thin film grown on a ferromagnet (FM). The inverse spin Hall effect 6 converts the spin current into a transverse voltage in the NM. Pt is commonly used as NM due to its large spin Hall angle 7 , but has generated some controversy in the interpretation because of its closeness to the Stoner criterion, which can induce, e.g., Hall or Nernst effects due to the proximity to the FM 8 .For a quantitative evaluation of the spin Seebeck effect (thermal generation of spin currents) one has to exclude or separate various parasitic effects. It is reported 5 that in transverse spin Seebeck experiments a spin current is generated perpendicular to the applied temperature gradient which is typically aligned in-plane. For ferromagnetic metals (FMMs) with magnetic anisotropy, the planar Nernst effect 9 can contribute 10 due to the anisotropic magnetothermopower. Furthermore, out-of-plane temperature gradients due to heat flow into the surrounding area 11 or through the electrical contacts 12 can induce an anomalous Nernst effect (ANE) [13][14][15] or even an unintended longitudinal spin Seebeck effect as recently reported 16 .The longitudinal spin Seebeck effect (LSSE) 17 describes a spin current that is generated parallel to the temperature gradient, which is typically aligned outof-plane to drive the parallel spin current directly into the NM material. For FMMs or semiconducting ferromagnets an ANE can also contribute to the measured voltage 18 . Furthermore, for NM materials close to the Stoner criterion a static magnetic proximity effect in the NM at the NM/FMI interface can lead to a proximity induced ANE 8 . If an in-plane temperature gradient is applied, a proximity induced planar Nernst effect ...
The spin Seebeck effect, the generation of a spin current by a temperature gradient, has attracted great attention, but the interplay over a millimetre range along a thin ferromagnetic film as well as unintended side effects which hinder an unambiguous detection have evoked controversial discussions. Here, we investigate the inverse spin Hall voltage of a 10 nm thin Pt strip deposited on the magnetic insulators Y3Fe5O12 and NiFe2O4 with a temperature gradient in the film plane. We show characteristics typical of the spin Seebeck effect, although we do not observe the most striking features of the transverse spin Seebeck effect. Instead, we attribute the observed voltages to the longitudinal spin Seebeck effect generated by a contact tip induced parasitic out-of-plane temperature gradient, which depends on material, diameter and temperature of the tip.
We fabricated NiFe 2 O 4 thin films on MgAl 2 O 4 (001) substrates by reactive dc magnetron co-sputtering in a pure oxygen atmosphere at different substrate temperatures. The film properties were investigated by various techniques with a focus on their structure, surface topography, magnetic characteristics, and transport properties. Structural analysis revealed a good crystallization with epitaxial growth and low roughness and a similar quality as in films grown by pulsed laser deposition. Electrical conductivity measurements showed high room temperature resistivity (12 Ωm), but low activation energy, indicating an extrinsic transport mechanism. A band gap of about 1.55 eV was found by optical spectroscopy. Detailed x-ray spectroscopy studies confirmed the samples to be ferrimagnetic with fully compensated Fe moments. By comparison with multiplet calculations of the spectra we found that the cation valencies are to a large extent Ni 2+ and Fe 3+ .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.