Effect of in-water oxygen prebreathing at different depths on decompression-induced bubble formation and platelet activation in scuba divers was evaluated. Six volunteers participated in four diving protocols, with 2 wk of recovery between dives. On dive 1, before diving, all divers breathed normally for 20 min at the surface of the sea (Air). On dive 2, before diving, all divers breathed 100% oxygen for 20 min at the surface of the sea [normobaric oxygenation (NBO)]. On dive 3, before diving, all divers breathed 100% O2 for 20 min at 6 m of seawater [msw; hyperbaric oxygenation (HBO) 1.6 atmospheres absolute (ATA)]. On dive 4, before diving, all divers breathed 100% O2 for 20 min at 12 msw (HBO 2.2 ATA). Then they dove to 30 msw (4 ATA) for 20 min breathing air from scuba. After each dive, blood samples were collected as soon as the divers surfaced. Bubbles were measured at 20 and 50 min after decompression and converted to bubble count estimate (BCE) and numeric bubble grade (NBG). BCE and NBG were significantly lower in NBO than in Air [0.142+/-0.034 vs. 0.191+/-0.066 (P<0.05) and 1.61+/-0.25 vs. 1.89+/-0.31 (P<0.05), respectively] at 20 min, but not at 50 min. HBO at 1.6 ATA and 2.2 ATA has a similar significant effect of reducing BCE and NBG. BCE was 0.067+/-0.026 and 0.040+/-0.018 at 20 min and 0.030+/-0.022 and 0.020+/-0.020 at 50 min. NBG was 1.11+/-0.17 and 0.92+/-0.16 at 20 min and 0.83+/-0.18 and 0.75+/-0.16 at 50 min. Prebreathing NBO and HBO significantly alleviated decompression-induced platelet activation. Activation of CD62p was 3.0+/-0.4, 13.5+/-1.3, 10.7+/-0.9, 4.5+/-0.7, and 7.6+/-0.8% for baseline, Air, NBO, HBO at 1.6 ATA, and HBO at 2.2 ATA, respectively. The data show that prebreathing oxygen, more effective with HBO than NBO, decreases air bubbles and platelet activation and, therefore, may be beneficial in reducing the development of decompression sickness.
Professor Piergiorgio Data, who passed away in September 2005, was a professor of physiology and of diving and hyperbaric medicine. The Diving and Subaquatic Activities Postgraduate Course of the Medical School at Gabriele D'Annunzio University, in Chieti, a small city in central Italy, started as a result of his extremely enthusiastic and charismatic care and, for almost 25 years, this specialty has been the most important reference for the three-year training of diving and hyperbaric doctors in Italy. In the field of the subaquatic activities, Professor Data was the concept designer and the practical developer of various research projects. He reported fundamental results especially regarding breath-hold diving and his work always reflected his scientific methodological strictness. He created innovative technological equipment, including the underwater radiographic apparatus and the subaquatic polygraph, as well as various underwater techniques used with well-known athletes such as Jacques Mayol. This review aims to pay homage to an unforgettable teacher.
Skeletal muscle biopsies require transecting the muscle fibers resulting, in structural damage near the cut ends. Classically, the optimal ultrastructural preservation has been obtained by the use of relatively large biopsies in which the tissue fibers are restrained by ligating to a suitable retaining support prior to excision, and by examining regions at some distance from the cut ends. However, these methods require invasive surgical procedures. In the present study, we present and substantiate an alternative approach that allows for the excellent ultrastructural preservation of needle biopsy samples, even the very small samples obtained through tiny percutaneous needle biopsy (TPNB). TPNB represents an advantage, relative to standard muscle biopsy techniques and to other needle biopsies currently in use, as in addition to not requiring a skin incision, it leaves no scars in the muscle and requires an extremely brief recovery period. It is most appropriate for obtaining repeated samples in horizontal studies, e.g., in order to follow changes with athletic training and/or aging in a single individual and for studies of sarcopenic muscles in elderly patients. Due to the small size of the sample, TPNB may present limited usefulness for classical pathology diagnostics. However, it offers the major advantage of allowing multiple samples within a single session and this may be useful under specific circumstances.
The term sarcopenia is defined as the loss of mass and muscular function with age. It is characterized by a metabolic status in which the muscles present a reduced ability to produce and use energy. Thus, in humans between 20 and 80 years of age, muscle mass decreases about 40%, with negative effects on mobility, strength production, metabolic rate and respiratory function. A continuous reparative process is also present in skeletal muscle due to the presence of quiescent adult stem cells, called satellite cells, which are able to change their phenotype when appropriate conditions are present. Sarcopenia is considered an event with a multifactorial etiology: (1) mitochondrial deletion, i.e., replication errors in mitochondrial DNA that lead to an energetic deficit and fiber atrophy; (2) protein synthesis alterations, with an imbalance between protein degradation and the ability of the fibers to synthesize protein; (3) loss of repair ability of the satellite cells, caused by an alteration in the proteic growth factors (mainly IGF-1, mIGF-1, HGF) and hormones (growth hormone, testosterone and estrogens), or by an imbalance of the antioxidant system. We are still far from a complete understanding of the causes and characteristics of the sarcopenic process, and from a solution to the problem. However, a suitable lifestyle (programmed physical training) and a suitable diet (caloric restriction) seem to be the most effective therapeutic approaches in order to control at least the more alarming symptoms of sarcopenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.