Flexible electronics is an emerging and promising technology for next generation of optoelectronic devices. Herein, hierarchical three-dimensional ZnCo(2)O(4) nanowire arrays/carbon cloth composites were synthesized as high performance binder-free anodes for Li-ion battery with the features of high reversible capacity of 1300-1400 mAh g(-1) and excellent cycling ability even after 160 cycles with a capacity of 1200 mAh g(-1). Highly flexible full batteries were also fabricated, exhibiting high flexibility, excellent electrical stability, and superior electrochemical performances.
Achieving visible-light-driven carbon dioxide reduction with high selectivity control and durability while using only earth abundant elements requires new strategies. Hybrid catalytic material was prepared upon covalent grafting a Co−quaterpyridine molecular complex to semiconductive mesoporous graphitic carbon nitride (mpg-C 3 N 4) through an amide linkage. The molecular material was characterized by various spectroscopic techniques, including XPS, IR, and impedance spectroscopy. It proved to be a selective catalyst for CO production in acetonitrile using a solar simulator with a high 98% selectivity, while being remarkably robust since no degradation was observed after 4 days of irradiation (ca. 500 catalytic cycles). This unique combination of a selective molecular catalyst with a simple and robust semiconductive material opens new pathways for CO 2 catalytic light-driven reduction.
Organic‐inorganic hybrid photoelectric devices draw considerable attention because of their unique features by combining the relatively low ionization potential of the organic molecules and the high electron affinity of inorganic semiconductors. Hybrid organic‐inorganic poly(3‐hexylthiophene) (P3HT):CdSe nanowire heterojunction photodetectors are first demonstrated on silicon substrates, exhibiting a greatly enhanced photocurrent, a fast response, and a recovery time shorter than 0.1 s. Flexible hybrid photodetectors with excellent mechanical flexibility and stability are also fabricated on both poly(ethylene terephthalate) (PET) substrates and printing paper. The flexible devices are successfully operated under bending up to almost 180° and show an extremely high on/off switching ratio (larger than 500), a fast time response (about 10 ms), and excellent wavelength‐dependence, which are very desirable properties for its practical application in high‐frequency or high‐speed flexible electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.