Insect chemosensory proteins (CSPs) have been proposed to capture and transport hydrophobic chemicals from air to olfactory receptors in the lymph of antennal chemosensilla. They may represent a new class of soluble carrier protein involved in insect chemoreception. However, their specific functional roles in insect chemoreception have not been fully elucidated. In this study, we report for the first time three novel CSP genes (AlinCSP1-3) of the alfalfa plant bug Adelphocoris lineolatus (Goeze) by screening the antennal cDNA library. The qRT-PCR examinations of the transcript levels revealed that all three genes (AlinCSP1-3) are mainly expressed in the antennae. Interestingly, these CSP genes AlinCSP1-3 are also highly expressed in the 5th instar nymphs, suggesting a proposed function of these CSP proteins (AlinCSP1-3) in the olfactory reception and in maintaining particular life activities into the adult stage. Using bacterial expression system, the three CSP proteins were expressed and purified. For the first time we characterized the types of sensilla in the antennae of the plant bug using scanning electron microscopy (SEM). Immunocytochemistry analysis indicated that the CSP proteins were expressed in the pheromone-sensitive sensilla trichodea and general odorant-sensitive sensilla basiconica, providing further evidence of their involvement in chemoreception. The antennal activity of 55 host-related semiochemicals and sex pheromone compounds in the host location and mate selection behavior of A. lineolatus was investigated using electroantennogram (EAG), and the binding affinities of these chemicals to the three CSPs (AlinCSP1-3) were measured using fluorescent binding assays. The results showed several host-related semiochemicals, (Z)-3-hexen-1-ol, (E)-2-hexen-1-al and valeraldehyde, have a high binding affinity with AlinCSP1-3 and can elicit significant high EAG responses of A. lineolatus antennae. Our studies indicate the three antennae-biased CSPs may mediate host recognition in the alfalfa plant bug A. lineolatus.
BackgroundPredatory syrphid larvae are an important natural enemy of aphids in cotton agro-ecosystems in China. Their behaviors in prey foraging, localization and oviposition greatly rely on the perception of chemical cues. As a first step to better understand syrphid olfaction at the molecular level, we have performed a systematic identification of their major chemosensory genes.ResultsMale and female antennal transcriptomes of Episyrphus balteatus and Eupeodes corollae were sequenced and assembled using Illumina HiSeq2000 technology. A total of 154 chemosensory genes in E. balteatus transcriptome, including candidate 51 odorant receptors (ORs), 32 ionotropic receptors (IRs), 14 gustatory receptors (GRs), 49 odorant-binding proteins (OBPs), 6 chemosensory proteins (CSPs) and 2 sensory neuron membrane proteins (SNMPs) were identified. In E. corollae transcriptome, we identified 134 genes including 42 ORs, 23 IRs, 16 GRs, 44 OBPs, 7 CSPs and 2 SNMPs. We have provided full-length sequences of the highly conserved co-receptor Orco, IR8a/25a family and carbon dioxide gustatory receptor in both syrphid species. The expression of candidate OR genes in the two syrphid species was evaluated by semi-quantitative reverse transcription PCR. There were no significant differences of transcript abundances in the respective male and female antenna, which is consistent with differentially expressed genes (DEGs) analysis using the FPKM value. The sequences of candidate chemosensory genes were confirmed and phylogenetic analysis was performed.ConclusionsThis research comprehensively analyzed and identified many novel candidate chemosensory genes regarding syrphid olfaction. It provides an opportunity for understanding how syrphid insects use chemical cues to conduct their behaviors among tritrophic interactions of plants, herbivorous insects, and natural enemies in agricultural ecosystems.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3939-4) contains supplementary material, which is available to authorized users.
The Bacteroides conjugative transposon, CTnDOT, is an integrated conjugative element (ICE), found in many human colonic Bacteroides spp. strains. It has a complex regulatory system for both excision from the chromosome and transfer and mobilization into a new host. It was previously shown that a cloned DNA segment encoding the xis2c, xis2d, orf3, and exc genes was required for tetracycline dependent activation of the Ptra promoter. The Xis2c and Xis2d proteins are required for excision while the Exc protein stimulates excision. We report here that neither the Orf3 nor the Exc proteins are involved in activation of the Ptra promoter. Deletion analysis and electromobility shift assays showed that the Xis2c and Xis2d proteins bind to the Ptra promoter to activate the tra operon. Thus, the recombination directionality factors of CTnDOT excision also function as activator proteins of the Ptra promoter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.