This paper presents an overview of the research activities developed in the framework of the ReLUIS project founded by Department of Civil Protection (DPC) in 2017 and 2018 and focused to analyze some experimental accelerations made available by the Osservatorio Sismico delle Strutture (OSS), an Italian network of permanent seismic monitoring systems belonging to DPC. In particular, the recordings acquired by OSS on three selected masonry structures hit by the 2016/2017 Central Italy were acquired, analyzed and re-elaborated by a team of researchers from the
A novel damage mechanics-based continuous micro-model for the analysis of masonry-walls is presented and compared with other two well-known discrete micro-models. The discrete micro-models discretize masonry micro-structure with nonlinear interfaces for mortar-joints, and continuum elements for units. The proposed continuous micro-model discretizes both units and mortar-joints with continuum elements, making use of a tension/compression damage model, here refined to properly reproduce the nonlinear response under shear and to control the dilatancy. The three investigated models are validated against experimental results. They all prove to be similarly effective, with the proposed model being less time-consuming, due to the efficient format of the damage model. Critical issues for these types of micro-models are analysed carefully, such as the accuracy in predicting the failure load and collapse mechanism, the computational efficiency and the level of approximation given by a 2D plane-stress assumption.Peer ReviewedPostprint (author's final draft
This paper investigates the possibility of using classical first order computational homogenization together with a simple regularization procedure based on the fracture energy of the micro-scale-constituents. A generalized geometrical characteristic length takes into account the size of the macro-scale element as well as the size of the RVE (and its constituents). The proposed regularization ensures objectivity of the dissipated energy at the macro-scale, with respect to the size of the FE in both scales and with respect to the size of the RVE. The proposed method is first validated against benchmark examples, and finally applied to the numerical simulation of experimental tests on in-plane loaded shear walls made of periodic masonry.
SUMMARYThis paper presents a masonry panel model for the nonlinear static and dynamic analysis of masonry buildings suitable for the seismic assessment of new and existing structures. The model is based on an equivalent frame idealization of the structure and stems from previous research on force-based frame elements. The element formulation considers axial, bending, and shear deformations within the framework of the Timoshenko beam theory. A phenomenological cyclic section law that accounts for the shear panel response is coupled, through equilibrium between shear and bending forces along the element, with a fiber-section model that accounts for the axial and bending responses. The proposed panel model traces with a low computational burden and numerical stability the main aspects of the structural behavior of masonry panels and is suitable for analyses of multi-floor buildings with a relatively regular distribution of openings and with walls and floors organized to grant a box-like behavior under seismic loads. The model capabilities are validated though analyses of simple unreinforced masonry panels and comparisons with published experimental results. The model accuracy is strongly dependent on the fiber and shear constitutive laws used. However, the formulation is general, and laws different from those employed in this study are easily introduced without affecting the model formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.