Background The understanding of the role of different immune cell subsets that infiltrate tumors can help researchers in developing new targeted immunotherapies to reactivate or reprogram them against cancer. In addition to conventional drugs, new cell-based therapies, like adoptive cell transfer, proved to be successful in humans. Indeed, after the approval of anti-CD19 CAR-T cell therapy, researchers are trying to extend this approach to other cancer or cell types. Main body This review focuses on the different approaches to non-invasively monitor the biodistribution, trafficking and fate of immune therapeutic cells, evaluating their efficacy at preclinical and clinical stages. PubMed and Scopus databases were searched for published articles on the imaging of cell tracking in humans and preclinical models. Conclusion Labelling specific immune cell subtypes with specific radiopharmaceuticals, contrast agents or optical probes can elucidate new biological mechanisms or predict therapeutic outcome of adoptive cell transfer therapies. To date, no technique is considered the gold standard to image immune cells in adoptive cell transfer therapies.
Background: Sjögren’s syndrome (SS) is a progressive autoimmune disease characterized by local mononuclear cell infiltration of the salivary and lachrymal glands. Labial biopsy demonstrates local infiltration by Th1 cells that produce pro-inflammatory cytokines, such as interleukin-2 (IL2). The aim of this study was to assess the utility of 99mTc-labelled-IL2 (99mTc-IL2) in evaluating in vivo the extent and severity of lympho-mononuclear cell infiltration in the salivary glands of patients with SS. Methods: We investigated 48 patients with primary SS and 27 control subjects using 99mTc-IL2 scintigraphy. Furthermore, in a subgroup of 30 patients, we also performed 99mTc-pertechnetate scintigraphy (99mTcO4−) for evaluation of the salivary gland function. Results: 99mTc-IL2 uptake in the salivary glands of SS patients was higher than in the control subjects (1.30 ± 0.16 vs. 0.83 ± 0.08 for parotids and 1.36 ± 0.15 vs. 1.16 ± 0.07 for submandibular glands; p < 0.0001). The salivary gland uptake of 99mTc-IL2 in patients with a longer history of disease was lower compared with the recently diagnosed patients. A significant direct correlation was found between the uptake of 99mTc-IL2 and histology. Conclusions: 99mTc-IL2 scintigraphy showed that the degree of lymphocytic infiltration of major salivary glands is variable in patients with different disease durations. Patients with a high 99mTc-IL2 uptake could be efficiently treated with immuno-modulatory drugs and the efficacy of treatment could be followed-up by 99mTc-IL2 scintigraphy.
Purpose To assess the diagnostic performance of Whole Body (WB)-MRI in comparison with 18F-Fluorodeoxyglucose-PET/CT (18F-FDG-PET/CT) in lymphoma staging and to assess whether quantitative metabolic parameters from 18F-FDG-PET/CT and Apparent Diffusion Coefficient (ADC) values are related. Materials and methods We prospectively enrolled patients with a histologically proven primary nodal lymphoma to undergo 18F-FDG-PET/CT and WB-MRI, both performed within 15 days one from the other, either before starting treatment (baseline) or during treatment (interim). Positive and negative predictive values of WB-MRI for the identification of nodal and extra-nodal disease were measured. The agreement between WB-MRI and 18F-FDG-PET/CT for the identification of lesions and staging was assessed through Cohen's coefficient k and observed agreement. Quantitative parameters of nodal lesions derived from 18F-FDG-PET/CT and WB-MRI (ADC) were measured and the Pearson or Spearman correlation coefficient was used to assess the correlation between them. The specified level of significance was p ≤ 0.05. Results Among the 91 identified patients, 8 refused to participate and 22 met exclusion criteria, thus images from 61 patients (37 men, mean age 30.7 years) were evaluated. The agreement between 18F-FDG-PET/CT and WB-MRI for the identification of nodal and extra-nodal lesions was 0.95 (95% CI 0.92 to 0.98) and 1.00 (95% CI NA), respectively; for staging it was 1.00 (95% CI NA). A strong negative correlation was found between ADCmean and SUVmean of nodal lesions in patients evaluated at baseline (Spearman coefficient rs = − 0.61, p = 0.001). Conclusion WB-MRI has a good diagnostic performance for staging of patients with lymphoma in comparison with 18F-FDG-PET/CT and is a promising technique for the quantitative assessment of disease burden in these patients.
Pancreatic neuroendocrine neoplasms (panNENs) are part of a large family of tumors arising from the neuroendocrine system. PanNENs show low–intermediate tumor grade and generally high somatostatin receptor (SSTR) expression. Therefore, panNENs benefit from functional imaging with 68Ga-somatostatin analogues (SSA) for diagnosis, staging, and treatment choice in parallel with morphological imaging. This narrative review aims to present conventional imaging techniques and new perspectives in the management of panNENs, providing the clinicians with useful insight for clinical practice. The 68Ga-SSA PET/CT is the most widely used in panNENs, not only fr diagnosis and staging purpose but also to characterize the biology of the tumor and its responsiveness to SSAs. On the contrary, the 18F-Fluordeoxiglucose (FDG) PET/CT is not employed systematically in all panNEN patients, being generally preferred in G2–G3, to predict aggressiveness and progression rate. The combination of 68Ga-SSA PET/CT and 18F-FDG PET/CT can finally suggest the best therapeutic strategy. Other radiopharmaceuticals are 68Ga-exendin-4 in case of insulinomas and 18F-dopamine (DOPA), which can be helpful in SSTR-negative tumors. New promising but still-under-investigation radiopharmaceuticals include radiolabeled SSTR antagonists and 18F-SSAs. Conventional imaging includes contrast enhanced CT and multiparametric MRI. There are now enriched by radiomics, a new non-invasive imaging approach, very promising to early predict tumor response or progression
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.