We investigate the stability, the dynamical properties and melting of a two-dimensional (2D) Wigner crystal (WC) of classical Coulombic particles in a bi-layer structure. Compared to the single-layer WC, this system shows a rich phase diagram. Five different crystalline phases are stable; the energetically favoured structure can be tuned by changing either the inter-layer distance or the particle density. Phase boundaries consist of both continuous and discontinuous transitions. We calculated the phonon excitations of the system within the harmonic approximation and we evaluated the melting temperature of the bi-layer WC by use of a modified Lindemann criterion, appropriate to 2D systems. We minimized the harmonic free-energy of the system with respect to the lattice geometry at different values of temperature/inter-layer distance and we found no temperature-induced structural phase transition.68.65.+g -Layer structures: multilayer, and superlattices 63.20.Dj -Phonon states and bands, normal modes, and phonon dispersion 64.70.Dv -Solid-liquid transitions Typeset using REVT E X
We present a new high-performance configuration interaction code optimally designed for the calculation of the lowest energy eigenstates of a few electrons in semiconductor quantum dots (also called artificial atoms) in the strong interaction regime. The implementation relies on a singleparticle representation, but it is independent of the choice of the single-particle basis and, therefore, of the details of the device and configuration of external fields. Assuming no truncation of the Fock space of Slater determinants generated from the chosen single-particle basis, the code may tackle regimes where Coulomb interaction very effectively mixes many determinants. Typical strongly correlated systems lead to very large diagonalization problems; in our implementation, the secular equation is reduced to its minimal rank by exploiting the symmetry of the effective-mass interacting Hamiltonian, including square total spin. The resulting Hamiltonian is diagonalized via parallel implementation of the Lanczos algorithm. The code gives access to both wave functions and energies of first excited states. Excellent code scalability in a parallel environment is demonstrated; accuracy is tested for the case of up to eight electrons confined in a two-dimensional harmonic trap as the density is progressively diluted up to the Wigner regime, where correlations become dominant. Comparison with previous Quantum Monte Carlo simulations in the Wigner regime demonstrates power and flexibility of the method.
The optical response of hybrid metal-semiconductor nanoparticles exhibits different behaviors due to the proximity between the disparate materials. For some hybrid systems, such as CdS-Au matchstick-shaped hybrids, the particles essentially retain the optical properties of their original components, with minor changes. Other systems, such as CdSe-Au dumbbell-shaped nanoparticles, exhibit significant change in the optical properties due to strong coupling between the two materials. Here, we study the absorption of these hybrids by comparing experimental results with simulations using the discrete dipole approximation method (DDA) employing dielectric functions of the bare components as inputs. For CdS-Au nanoparticles, the DDA simulation provides insights on the gold tip shape and its interface with the semiconductor, information that is difficult to acquire by experimental means alone. Furthermore, the qualitative agreement between DDA simulations and experimental data for CdS-Au implies that most effects influencing the absorption of this hybrid system are well described by local dielectric functions obtained separately for bare gold and CdS nanoparticles. For dumbbell shaped CdSe-Au, we find a shortcoming of the electrodynamic model, as it does not predict the "washing out" of the optical features of the semiconductor and the metal observed experimentally. The difference between experiment and theory is ascribed to strong interaction of the metal and semiconductor excitations, which spectrally overlap in the CdSe case. The present study exemplifies the employment of theoretical approaches used to describe the optical properties of semiconductors and metal nanoparticles, to achieve better understanding of the behavior of metal-semiconductor hybrid nanoparticles.
We describe the valence-band holes of quantum dot molecules formed by two vertically coupled disks, using a four-band k · p Hamiltonian. It is shown that the strong spin-orbit coupling of the valence band introduces characteristic features in the hole tunneling, which are not captured by the usual single-band heavy-hole approximation. Therefore, a treatment of hole states as multiband Luttinger spinors is required. Within this description the parity symmetry in the vertical direction is lost, and chirality symmetry must be used instead. Effects of spin-orbit coupling on the hole and exciton states, as well as on the optical transitions are discussed. We show that, with increasing interdot distance, the spin-orbit interaction leads to a bonding-antibonding ground-state transition and to quenching of the excitonic emission. These results are relevant to recent experiments.J m z ͑k n m z ͒ is the Bessel function of order m z and radial quantum number n. k n m z represents the hole wave vector, de-FIG. 1. ͑Color online͒ Schematic representation of the CQDs under study and the vertical confinement potential V h ͑z͒. CLIMENTE et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.