The diabetic foot ulcer, which 2% – 6% of diabetes patients experience, is a severe health threat. It is closely linked to the risk of lower extremity amputation (LEA). When a DFU is present, the chief imperative is to initiate tertiary preventive actions to avoid amputation. In this light, clinical decision support systems (CDSS) can guide clinicians to identify DFU patients early. In this study, the PEDIS classification and a Bayesian logistic regression model are utilised to develop and evaluate a decision method for patient stratification. Therefore, we conducted a Bayesian cutpoint analysis. The CDSS revealed an optimal cutpoint for the amputation risk of 0.28. Sensitivity and specificity were 0.83 and 0.66. These results show that although the specificity is low, the decision method includes most actual patients at risk, which is a desirable feature in monitoring patients at risk for major amputation. This study shows that the PEDIS classification promises to provide a valid basis for a DFU risk stratification in CDSS.
Background: Diabetes mellitus is a major global health issue with a growing prevalence. In this context, the number of diabetic complications is also on the rise, such as diabetic foot ulcers (DFU), which are closely linked to the risk of lower extremity amputation (LEA). Statistical prediction tools may support clinicians to initiate early tertiary LEA prevention for DFU patients. Thus, we designed Bayesian prediction models, as they produce transparent decision rules, quantify uncertainty intuitively and acknowledge prior available scientific knowledge. Method: A logistic regression using observational collected according to the standardised PEDIS classification was utilised to compute the six-month amputation risk of DFU patients for two types of LEA: 1.) any-amputation and 2.) major-amputation. Being able to incorporate information which is available before the analysis, the Bayesian models were fitted following a twofold strategy. First, the designed prediction models waive the available information and, second, we incorporated the a priori available scientific knowledge into our models. Then, we evaluated each model with respect to the effect of the predictors and validity of the models. Next, we compared the performance of both models with respect to the incorporation of prior knowledge. Results: This study included 237 patients. The mean age was 65.9 (SD 12.3), and 83.5% were male. Concerning the outcome, 31.6% underwent any-and 12.2% underwent a major-amputation procedure. The risk factors of perfusion, ulcer extent and depth revealed an impact on the outcomes, whereas the infection status and sensation did not. The major-amputation model using prior information outperformed the uninformed counterpart (AUC 0.765 vs AUC 0.790, Cohen's d 2.21). In contrast, the models predicting any-amputation performed similarly (0.793 vs 0.790, Cohen's d 0.22). Conclusions: Both of the Bayesian amputation risk models showed acceptable prognostic values, and the majoramputation model benefitted from incorporating a priori information from a previous study. Thus, PEDIS serves as a valid foundation for a clinical decision support tool for the prediction of the amputation risk in DFU patients. Furthermore, we demonstrated the use of the available prior scientific information within a Bayesian framework to establish chains of knowledge.
Diabetic foot ulcer (DFU) is a chronic wound and a common diabetic complication as 2% – 6% of diabetic patients witness the onset thereof. The DFU can lead to severe health threats such as infection and lower leg amputations, Coordination of interdisciplinary wound care requires well-written but time-consuming wound documentation. Artificial intelligence (AI) systems lend themselves to be tested to extract information from wound images, e.g. maceration, to fill the wound documentation. A convolutional neural network was therefore trained on 326 augmented DFU images to distinguish macerated from unmacerated wounds. The system was validated on 108 unaugmented images. The classification system achieved a recall of 0.69 and a precision of 0.67. The overall accuracy was 0.69. The results show that AI systems can classify DFU images for macerations and that those systems could support clinicians with data entry. However, the validation statistics should be further improved for use in real clinical settings. In summary, this paper can contribute to the development of methods to automatic wound documentation.
Neurothekeomas are benign connective tissue tumors probably of nerve sheath origin. Making diagnosis is often difficult, because of many histological similar looking tumors. Immunostaining of S-100 protein is a helpful method for differentiation. We report a case of subungual neurothekeoma affecting the little toe, which is to our knowledge the first to be described in the literature. In spite of an incomplete excision of the tumor with tails reaching to the base of the specimen, no recurrence after 1-year follow-up was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.