The PLI performed at least as well as the PC in detecting true changes in synchronization in model and real data but, at the same token and like-wise the IC, it was much less affected by the influence of common sources and active reference electrodes.
We investigated whether functional brain networks are abnormally organized in Alzheimer's disease (AD). To this end, graph theoretical analysis was applied to matrices of functional connectivity of beta band-filtered electroencephalography (EEG) channels, in 15 Alzheimer patients and 13 control subjects. Correlations between all pairwise combinations of EEG channels were determined with the synchronization likelihood. The resulting synchronization matrices were converted to graphs by applying a threshold, and cluster coefficients and path lengths were computed as a function of threshold or as a function of degree K. For a wide range of thresholds, the characteristic path length L was significantly longer in the Alzheimer patients, whereas the cluster coefficient C showed no significant changes. This pattern was still present when L and C were computed as a function of K. A longer path length with a relatively preserved cluster coefficient suggests a loss of complexity and a less optimal organization. The present study provides further support for the presence of "small-world" features in functional brain networks and demonstrates that AD is characterized by a loss of small-world network characteristics. Graph theoretical analysis may be a useful approach to study the complexity of patterns of interrelations between EEG channels.
The equation for the magnetic lead field for a given magnetoencephalography (MEG) channel is well known for arbitrary frequencies omega but is not directly applicable to MEG in the quasi-static approximation. In this paper we derive an equation for omega = 0 starting from the very definition of the lead field instead of using Helmholtz's reciprocity theorems. The results are (a) the transpose of the conductivity times the lead field is divergence-free, and (b) the lead field differs from the one in any other volume conductor by a gradient of a scalar function. Consequently, for a piecewise homogeneous and isotropic volume conductor, the lead field is always tangential at the outermost surface. Based on this theoretical result, we formulated a simple and fast method for the MEG forward calculation for one shell of arbitrary shape: we correct the corresponding lead field for a spherical volume conductor by a superposition of basis functions, gradients of harmonic functions constructed here from spherical harmonics, with coefficients fitted to the boundary conditions. The algorithm was tested for a prolate spheroid of realistic shape for which the analytical solution is known. For high order in the expansion, we found the solutions to be essentially exact and for reasonable accuracies much fewer multiplications are needed than in typical implementations of the boundary element methods. The generalization to more shells is straightforward.
We propose a new measure to estimate the direction of information flux in multivariate time series from complex systems. This measure, based on the slope of the phase spectrum (Phase Slope Index) has invariance properties that are important for applications in real physical or biological systems: (a) it is strictly insensitive to mixtures of arbitrary independent sources, (b) it gives meaningful results even if the phase spectrum is not linear, and (c) it properly weights contributions from different frequencies. Simulations of a class of coupled multivariate random data show that for truly unidirectional information flow without additional noise contamination our measure detects the correct direction as good as the standard Granger causality. For random mixtures of independent sources Granger Causality erroneously yields highly significant results whereas our measure correctly becomes non-significant. An application of our novel method to EEG data (88 subjects in eyes-closed condition) reveals a strikingly clear front-to-back information flow in the vast majority of subjects and thus contributes to a better understanding of information processing in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.