U-Pb zircon geochronology is one of the most widely used techniques in sedimentary provenance analysis. Unfortunately, the ability of this method to identify sediment sources is often degraded by sediment recycling and mixing of detritus from different source rocks sharing similar age signatures. These processes create non-unique zircon U-Pb age signatures and thereby obscure the provenance signal. We here address this problem by combining detrital zircon U-Pb geochronology with Raman spectroscopy. The position and width of the Raman signal in zircon scales with its degree of metamictization, which in turn is sensitive to temperature. Thus, combined U-Pb + Raman datasets encode information about the crystallisation history of detrital zircons as well as their thermal history. Using three borehole samples from Mozambique as part of a source-to-sink study of interest for hydrocarbon exploration, we show that zircon populations with similar U-Pb age distributions can exhibit different Raman signatures. The joint U-Pb + Raman analysis allowed us to identify three different annealing trends, which were linked to specific thermal events. Thus we were able to differentiate a dominant Pan-African U-Pb age peak into several sub-populations and highlight the major effect of Karoo tectono-magmatic events. In our case study, we used Raman *Revised manuscript with no changes marked Click here to view linked References
The Zambezi River rises at the center of southern Africa, flows across the low-relief Kalahari Plateau, meets Karoo basalt, plunges into Victoria Falls, follows along Karoo rifts, and pierces through Precambrian basement to eventually deliver its load onto the Mozambican passive margin. Reflecting its polyphase evolution, the river is subdivided into segments with different geological and geomorphological character, a subdivision finally fixed by man's construction of large reservoirs and faithfully testified by sharp changes in sediment composition. Pure quartzose sand recycled from Kalahari desert dunes in the uppermost tract is next progressively enriched in basaltic rock fragments and clinopyroxene. Sediment load is renewed first downstream of Lake Kariba and next downstream of Lake Cahora Bassa, documenting a stepwise decrease in quartz and durable heavy minerals. Composition becomes quartzofeldspathic in the lower tract, where most sediment is supplied by high-grade basements rejuvenated by the southward propagation of the East African rift. Feldspar abundance in Lower Zambezi sand has no equivalent among big rivers on Earth and far exceeds that in sediments of the northern delta, shelf, and slope, revealing that provenance signals from the upper reaches have ceased to be transmitted across the routing system after closure of the big dams. This high-resolution petrologic study of Zambezi sand allows us to critically reconsider several dogmas, such as the supposed increase of mineralogical "maturity" during long-distance fluvial transport, and forges a key to unlock the rich information stored in sedimentary archives, with the ultimate goal to accurately reconstruct the evolution of this mighty river flowing across changing African landscapes since the late Mesozoic. 3"A river or a drainage basin might best be considered to have a heritage rather than an origin.It is like an organic form, the product of a continuous evolutionary line through time."
Elemental geochemistry, Nd isotopes, clay minerals, and U-Pb zircon ages integrated by petrographic and heavy-mineral data offer a multi-proxy panorama of mud and sand composition across the Zambezi sediment-routing system. Detrital-zircon geochronology highlights the four major episodes of crustal growth in southern Africa: Irumide ages predominate over Pan-African, Eburnean, and Neoarchean ages. Smectite, dominant in mud generated from Karoo basalts or in the equatorial/winter-dry climate of Mozambican lowlands, prevails over illite and kaolinite. Elemental geochemistry reflects quartz addition by recycling (Uppermost Zambezi), supply from Karoo basalts (Upper Zambezi), and first-cycle provenance from Precambrian basements (Lower Zambezi). Mildly negative for sediments derived from mafic granulites, gabbros, and basalts, åNd values are most negative for sand derived from cratonic gneisses. Intrasample variability among cohesive mud, very coarse silt, and sand is principally caused by the concentration of Nd-rich monazite in the fine tail of the size distribution. The settling-equivalence effect also explains deviations from the theoretical relationship between åNd and TNd,DM model ages, suggesting that monazite carries a more negative åNd signal than less dense and less durable heavy minerals. Elemental geochemistry and Nd isotopes reveal that the Mazowe-Luenha river system contributes most of the sediment reaching the Zambezi Delta today, with minor supply by the Shire River. Sediment yields and erosion rates are lower by an order of magnitude on the low-relief Kalahari Plateau than in rugged Precambrian terranes. On the Plateau, mineralogical and geochemical indices testify to extensive breakdown of feldspars and garnet unjustified by the presently dry climate. Detrital kaolinite is recycled by incision of Cretaceous-Cenozoic paleosols even in the wetter lower catchment, where inefficient hydrolysis is testified by abundant fresh feldspars and undepleted Ca and Na. Mud geochemistry and surficial corrosion of ferromagnesian minerals indicate that, at present, weathering increases only slightly downstream the Zambezi River.Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.