Apex marine predators alter their foraging behavior in response to spatial and/or seasonal changes in natural prey distribution and abundance. However, few studies have identified the impacts of aquaculture that represents a spatially and temporally predictable and abundant resource on their foraging behavior. Using satellite telemetry and stable isotope analysis we examined the degree of spatial overlap between the South American sea lion (SASL) and salmon farms, and quantify the amount of native prey versus farmed salmonids in SASL diets. We instrumented eight SASL individuals with SRDL-GPS tags. Vibrissae, hair and skin samples were collected for δ13C and δ15N analyses from five of the tagged individuals and from four males captured in a haul-out located adjacent to salmon farms. Tracking results showed that almost all the foraging areas of SASL are within close proximity to salmon farms. The most important prey for the individuals analyzed was farmed salmonids, with an estimated median (±SD) contribution of 19.7 ± 13.5‰ and 15.3 ± 9.6‰ for hair and skin, respectively. Using vibrissae as a temporal record of diet for each individual, we observed a remarkable switch in diet composition in two SASL, from farmed salmonids to pelagic fishes, which coincided with the decrease of salmon production due to the infectious salmon anemia virus that affected salmon farms in Chile at the end of 2008. Our study demonstrates the usefulness of integrating stable isotope derived dietary data with movement patterns to characterize the impacts of a non-native prey on the foraging ecology of an apex marine predator, providing important applied implications in situations where interactions between aquaculture and wildlife are common.
Resumen.-Estudios de dieta del lobo marino común (LMC) en Chile sugieren que esta especie es un depredador oportunista y generalista, cuya dieta varía dependiendo de la distribución de las especies presas y de las varia ciones espaciotemporales en la abundancia de dichas presas. Sin embargo, estos estudios han sido esporádicos, limitados espacialmente y basados en análisis de contenidos estomacales, lo que no permite un análisis integral de la compos ición de la dieta y de sus potenciales diferencias espacio-temporales. En este estudio se analizó la composición de la d ieta del LMC en 3 zonas geográficas de la costa chilena utilizando los isótopos estables de 13 C y 15 N en muestras de pelo y piel. En la zona norte las principales especies consumidas fueron los peces Isacia conceptionis (19,5%) de acuerdo al análisis de piel y Cilus gilberti (23,3%) en análisis de pelo; en la zona centro lo fueron Thyrsites atun (40,1%) en piel y Strangomera bentincki (31,1%) en pelo; mientras que en la zona sur especies de peces pelágicos (como T. atun y Trachurus murphyi, 20,8%) en piel y salmones de cultivo (20,7%) en pelo. Estas diferencias demuestran que el LMC muestra cambios espac iales en la composición de su dieta. Variaciones entre tejidos, así como con lo registrado en estudios previos, sugiere que esta especie es capaz de adaptarse a variaciones, tanto intra como inter-anuales, de la presencia/ausencia de sus presas. Abstract.-Diet studies of the South American sea lion (SASL) in Chile suggest that this species is an opportunistic and generalist predator whose diet varies depending on the distribution of prey species and spatial and temporal variations in the abundance of these dams. However, these studies have been sporadic, geographically limited and based on stomach content analysis, which does not allow an integral analysis of the composition of the diet of this species and its potential spatial and temporal variability. In this study we analyzed the diet of the SASL in 3 geographic zones of the coast of Chile using analysis of stable isotopes 13 C and 15N on hair and skin tissues. In the northern zone, the main prey species consumed by SASL were Isacia conceptionis (19.5%) for skin and Cilus gilberti (23.3%) for hair; in the central zone were Thyrsites atun (40.1%) for skin and Strangomera bentincki (31.1%) for hair, whereas in the southern zone the main species were pelagic fish (such as T. atun and Trachurus murphyi, 20.8%) for skin and farm-raised salmonids (20.7%) for hair analysis. These differences indicate variation in the composition of its diet. Variations between the analyzed tissues and also with previous studies suggest that this species is capable of adapting to intra-and inter-annual variations in the presence/absence of its prey.
Four fin whale sub-species are currently considered valid: Balaenoptera physalus physalus in the North Atlantic, B. p. velifera in the North Pacific, B. p. quoyi and B. p. patachonica in the Southern Hemisphere. The last, not genetically validated, was described as a pygmy-type sub-species, found in low to mid latitudes of the Southern Hemisphere. Genetic analyses across hemispheres show strong phylogeographic structure, yet low geographic coverage in middle latitudes of the Southern Hemisphere impeded an assessment within the area, as well as evaluating the validity of B. p. patachonica. New mtDNA sequences from the Southeastern Pacific allowed an improved coverage of the species’ distribution. Our phylogenetic analyses showed three main lineages and contrasting phylogeographic patterns between Northern and Southern Hemispheres. Absence of recurrent female mediated gene flow between hemispheres was found; however, rare dispersal events revealing old migrations were noted. The absence of genetic structure suggests the existence of one single taxa within the Southern Hemisphere. Thus, until further evidence supporting this subspecies can be produced, such as genetic, ecological, behavioral, or morphological data, we propose that all fin whales from the Southern Hemisphere, including those from middle latitudes of the Southeastern Pacific belong to B. p. quoyi subspecies. This information is important for the current assessment of fin whales, contributing to the evaluation of the taxonomic classification and the conservation of the species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.