Nevertheless, between 1985Nevertheless, between and 1997Nevertheless, between and between 1997Nevertheless, between and 2007, the estimated number of sea lions showed a stable or slightly negative trend of 0.4 ± 0.1 % yr -1 and 0.5 ± 0.1 % yr -1 , respectively. We suggest that the overexploitation and decline of the principal fisheries in Central Chile could adversely impact the abundance and distribution of the South American sea lion in the study area.Key words: census, Chilean coast, Otaria flavescens, overexploitation, sea lions. RESUMENSe estimó la distribución y la abundancia poblacional del lobo marino común Otaria flavescens en la costa de Chile central durante los meses de enero y febrero de 2007. Adicionalmente, se analizaron los cambios en la abundancia de esta especie durante el período 1970-2007. Los censos poblacionales se basaron en fotografías tomadas desde embarcaciones menores o desde avionetas. Se contabilizaron un total de 16301 lobos marinos (IC = 16209-16375) en 33 colonias (6 reproductivas y 27 no reproductivas). Después de corregir por la proporción de animales en el agua y por crías no registradas al momento del censo, se estimó una abundancia promedio de 18179 (95 % IC = 17777-18851) lobos marinos en el área de estudio. El análisis de tendencia poblacional presentó que desde 1970 a 1985 la abundancia del lobo marino común mostró un crecimiento positivo de aproximadamente 2.1 % año -1 . Sin embargo, entre 1985 y 1997, y entre 1997 y 2007, el número de lobos marinos muestra una tendencia estable o ligeramente negativa de 0.4 ± 0.1 % año -1 y 0.5 ± 0.1 % año -1 , respectivamente. Se sugiere que la sobreexplotación y la declinación de las principales pesquerías en la zona central de Chile podrían haber impactado negativamente la distribución y abundancia del lobo marino común en el área de estudio.
While large mass mortality events (MMEs) are well known for toothed whales, they have been rare in baleen whales due to their less gregarious behavior. Although in most cases the cause of mortality has not been conclusively identified, some baleen whale mortality events have been linked to bio-oceanographic conditions, such as harmful algal blooms (HABs). In Southern Chile, HABs can be triggered by the ocean–atmosphere phenomenon El Niño. The frequency of the strongest El Niño events is increasing due to climate change. In March 2015, by far the largest reported mass mortality of baleen whales took place in a gulf in Southern Chile. Here, we show that the synchronous death of at least 343, primarily sei whales can be attributed to HABs during a building El Niño. Although considered an oceanic species, the sei whales died while feeding near to shore in previously unknown large aggregations. This provides evidence of new feeding grounds for the species. The combination of older and newer remains of whales in the same area indicate that MMEs have occurred more than once in recent years. Large HABs and reports of marine mammal MMEs along the Northeast Pacific coast may indicate similar processes in both hemispheres. Increasing MMEs through HABs may become a serious concern in the conservation of endangered whale species.
Understanding genetic differentiation and speciation processes in marine species with high dispersal capabilities is challenging. The Chilean dolphin, Cephalorhynchus eutropia, is the only endemic cetacean of Chile and is found in two different coastal habitats: a northern habitat with exposed coastlines, bays and estuaries from Valparaíso (33°02′S) to Chiloé (42°00′S), and a southern habitat with highly fragmented inshore coastline, channels and fjords between Chiloé and Navarino Island (55°14′S). With the aim of evaluating the potential existence of conservation units for this species, we analyzed the genetic diversity and population structure of the Chilean dolphin along its entire range. We genotyped 21 dinucleotide microsatellites for 53 skin samples collected between 1998 and 2012 (swab: n = 8, biopsy: n = 38, entanglement n = 7). Bayesian clustering and spatial model analyses identified two genetically distinct populations corresponding to the northern and southern habitats. Genetic diversity levels were similar in the two populations (He: 0.42 v/s 0.45 for southern and northern populations, respectively), while effective size population was higher in the southern area (Ne: 101 v/s 39). Genetic differentiation between these two populations was high and significant (FST = 0.15 and RST = 0.19), indicating little or no current gene flow. Because of the absence of evident geographical barriers between the northern and southern populations, we propose that genetic differentiation may reflect ecological adaptation to the different habitat conditions and resource uses. Therefore, the two genetic populations of this endemic and Near Threatened species should be considered as different conservation units with independent management strategies.
The South American sea lion (Otaria flavescens) is widely distributed along the southern Atlantic and Pacific coasts of South America with a history of significant commercial exploitation. We aimed to evaluate the population genetic structure and the evolutionary history of South American sea lion along its distribution by analyses of mitochondrial DNA (mtDNA) and 10 nuclear microsatellites loci. We analyzed 147 sequences of mtDNA control region and genotyped 111 individuals of South American sea lion for 10 microsatellite loci, representing six populations (Peru, Northern Chile, Southern Chile, Uruguay (Brazil), Argentina and Falkland (Malvinas) Islands) and covering the entire distribution of the species. The mtDNA phylogeny shows that haplotypes from the two oceans comprise two very divergent clades as observed in previous studies, suggesting a long period (>1 million years) of low inter-oceanic female gene flow. Bayesian analysis of bi-parental genetic diversity supports significant (but less pronounced than mitochondrial) genetic structure between Pacific and Atlantic populations, although also suggested some inter-oceanic gene flow mediated by males. Higher male migration rates were found in the intra-oceanic population comparisons, supporting very high female philopatry in the species. Demographic analyses showed that populations from both oceans went through a large population expansion ~10,000 years ago, suggesting a very similar influence of historical environmental factors, such as the last glacial cycle, on both regions. Our results support the proposition that the Pacific and Atlantic populations of the South American sea lion should be considered distinct evolutionarily significant units, with at least two managements units in each ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.