In this paper, we discuss the Hamiltonicity of graphs in terms of Wiener index, hyper-Wiener index and Harary index of their quasi-complement or complement. Firstly, we give some sufficient conditions for an balanced bipartite graph with given the minimum degree to be traceable and Hamiltonian, respectively. Secondly, we present some sufficient conditions for a nearly balanced bipartite graph with given the minimum degree to be traceable. Thirdly, we establish some conditions for a graph with given the minimum degree to be traceable and Hamiltonian, respectively. Finally, we provide some conditions for a k-connected graph to be Hamilton-connected and traceable for every vertex, respectively.
A pancyclic graph of order
n
is a graph with cycles of all possible lengths from 3 to
n
. In fact, it is NP-complete that deciding whether a graph is pancyclic. Because the spectrum of graphs is convenient to be calculated, in this study, we try to use the spectral theory of graphs to study this problem and give some sufficient conditions for a graph to be pancyclic in terms of the spectral radius and the signless Laplacian spectral radius of the graph.
Given a graph and a vector defined on the graph, a quadratic form is defined on the graph depending on its edges. In order to minimize the quadratic form on trees or unicyclic graphs associated with signless Laplacian, the notion of basic edge set of a graph is introduced, and the behavior of the least eigenvalue and the corresponding eigenvectors is investigated. Using these results a characterization of the unique bicyclic graph whose least eigenvalue attains the minimum among all non-bipartite bicyclic graphs of fixed order is obtained.
The adjacency matrix of a graph is a matrix which represents adjacent relation between the vertices of the graph. Its minimum eigenvalue is defined as the least eigenvalue of the graph. Let Gn be the set of the graphs of order n, whose complements are connected and have pendent paths. This paper investigates the least eigenvalue of the graphs and characterizes the unique graph which has the minimum least eigenvalue in Gn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.