A pancyclic graph of order
n
is a graph with cycles of all possible lengths from 3 to
n
. In fact, it is NP-complete that deciding whether a graph is pancyclic. Because the spectrum of graphs is convenient to be calculated, in this study, we try to use the spectral theory of graphs to study this problem and give some sufficient conditions for a graph to be pancyclic in terms of the spectral radius and the signless Laplacian spectral radius of the graph.
Let G be a graph, and the number of components of G is denoted by c(G). Let t be a positive real number. A connected graph G is t-tough if tc(G − S) ≤ |S| for every vertex cut S of V(G). The toughness of G is the largest value of t for which G is t-tough, denoted by τ(G). We call a graph G Hamiltonian if it has a cycle that contains all vertices of G. Chvátal and other scholars investigate the relationship between toughness conditions and the existence of cyclic structures. In this paper, we establish some sufficient conditions that a graph with toughness is Hamiltonian based on the number of edges, spectral radius, and signless Laplacian spectral radius of the graph.MR subject classifications: 05C50, 15A18.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.