Lateral roots (LRs), which originate from the growing root, and adventitious roots (ARs), which are formed from non-root organs, are the main contributors to the post-embryonic root system in Arabidopsis. However, our knowledge of how formation of the root system is altered in response to diverse inductive cues is limited. Here, we show that WOX11 contributes to root system plasticity. When seedlings are grown vertically on medium, WOX11 is not expressed in LR founder cells. During AR initiation, WOX11 is expressed in AR founder cells and activates LBD16. LBD16 also functions in LR formation and is activated in that context by ARF7/19 and not by WOX11. This indicates that divergent initial processes that lead to ARs and LRs may converge on a similar mechanism for primordium development. Furthermore, we demonstrated that when plants are grown in soil or upon wounding on medium, the primary root is able to produce both WOX11-mediated and non-WOX11-mediated roots. The discovery of WOX11-mediated root-derived roots reveals a previously uncharacterized pathway that confers plasticity during the generation of root system architecture in response to different inductive cues.
The formation of large (approximately 20-35 nm) surface hemimicelles in monolayers of semifluorinated alkanes, C(n)F(2)(n)(+1)C(m)H(2)(m)(+1) (FnHm), observed after transfer onto silicon wafers, is a general phenomenon. F6H16 and F8H14 exclusively form highly monodisperse circular hemimicelles, organized in a hexagonal array. The other FnHm investigated form both circular and elongated hemimicelles. The longer FnHm is, the larger the area fraction of elongated micelles; both the hydrocarbon block (H-block) and the fluorocarbon block (F-block) affect this area fraction. The length of the elongated micelles increases with the total length of the diblocks. The diameter of the circular micelles increases with the length of the H-block but, unexpectedly, not with that of the F-block. Model calculations account for these observations. Close examination of the circular micelles showed that they generally present a pit or a tip at their center. The width of the elongated micelles is comparable to the radius of the circular micelles, suggesting that the latter arise from a partition of elongated micelles, followed by coalescence of the edges of the resulting fragments. The elongated micelles become shorter and fewer when surface pressure increases, further suggesting a conversion of elongated into circular micelles. This conversion is reversible. The surface pressure-molecular area isotherms do not present any feature that forebears the existence of hemimicelles. The obtaining of stable surface patterns from simple, "nonpolar" molecular fluorocarbon/hydrocarbon diblocks opens a new approach for producing featured nanostructures from organic templates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.