The formation of large (approximately 20-35 nm) surface hemimicelles in monolayers of semifluorinated alkanes, C(n)F(2)(n)(+1)C(m)H(2)(m)(+1) (FnHm), observed after transfer onto silicon wafers, is a general phenomenon. F6H16 and F8H14 exclusively form highly monodisperse circular hemimicelles, organized in a hexagonal array. The other FnHm investigated form both circular and elongated hemimicelles. The longer FnHm is, the larger the area fraction of elongated micelles; both the hydrocarbon block (H-block) and the fluorocarbon block (F-block) affect this area fraction. The length of the elongated micelles increases with the total length of the diblocks. The diameter of the circular micelles increases with the length of the H-block but, unexpectedly, not with that of the F-block. Model calculations account for these observations. Close examination of the circular micelles showed that they generally present a pit or a tip at their center. The width of the elongated micelles is comparable to the radius of the circular micelles, suggesting that the latter arise from a partition of elongated micelles, followed by coalescence of the edges of the resulting fragments. The elongated micelles become shorter and fewer when surface pressure increases, further suggesting a conversion of elongated into circular micelles. This conversion is reversible. The surface pressure-molecular area isotherms do not present any feature that forebears the existence of hemimicelles. The obtaining of stable surface patterns from simple, "nonpolar" molecular fluorocarbon/hydrocarbon diblocks opens a new approach for producing featured nanostructures from organic templates.
Previous work has demonstrated that semifluorinated alkanes CnF2n+1CmH2m+1 (FnHm diblocks), when used in conjunction with phospholipids, strongly stabilize fluorocarbon (FC)-in-water emulsions destined to be used as oxygen carriers. Although the presence of FnHm diblocks in the emulsion's interfacial phospholipid film was suggested to account for the observed stabilization, no direct proof of the diblock's location has been provided so far. We now report definite experimental evidence of the diblock's presence at the interfacial film, both on a macroscopic level by investigating the FC/water interface using the pendant drop method and directly on emulsions by monitoring their stability for various phospholipid chain lengths. We first establish that F8H16 has a strong cosurfactant effect with phospholipids [dimyristoylphosphatidylcholine (DMPC), dilaurylphosphatidylcholine (DLPC), dioctanoylphosphatidylcholine (PCL8)] at a perfluorooctyl bromide (PFOB)/water interface, as evidenced by a dramatic F8H16-concentration-dependent decrease of the interfacial tension. Where FC emulsions are concerned, we show that the stabilization effect, which consists of a decrease of the rate of molecular diffusion of the FC, depends strongly on the length of the phospholipid's fatty chain as compared to the length of the hydrocarbon segment, Hm, of the diblock. Stabilization is maximized when the Hm length is similar to that of the phospholipid's fatty chains. A strong mismatch between Hm and the phospholipid chain length can actually destabilize the emulsion. A different destabilization mechanism is then at work: coalescence. The presence of F8H16 at the interfacial film is further supported by the fact that perfluorodecyl bromide, a heavy analogue of PFOB that stabilizes PFOB emulsions by lowering the solubility and diffusibility of the emulsion's dispersed FC phase, exercises its stabilizing effect similarly for all the phospholipids investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.