BackgroundResearchers discover lncRNAs can act as decoys or sponges to regulate the behavior of miRNAs. Identification of lncRNA-miRNA interactions helps to understand the functions of lncRNAs, especially their roles in complicated diseases. Computational methods can save time and reduce cost in identifying lncRNA-miRNA interactions, but there have been only a few computational methods.ResultsIn this paper, we propose a sequence-derived linear neighborhood propagation method (SLNPM) to predict lncRNA-miRNA interactions. First, we calculate the integrated lncRNA-lncRNA similarity and the integrated miRNA-miRNA similarity by combining known lncRNA-miRNA interactions, lncRNA sequences and miRNA sequences. We consider two similarity calculation strategies respectively, namely similarity-based information combination (SC) and interaction profile-based information combination (PC). Second, the integrated lncRNA similarity-based graph and the integrated miRNA similarity-based graph are respectively constructed, and the label propagation processes are implemented on two graphs to score lncRNA-miRNA pairs. Finally, the weighted averages of their outputs are adopted as final predictions. Therefore, we construct two editions of SLNPM: sequence-derived linear neighborhood propagation method based on similarity information combination (SLNPM-SC) and sequence-derived linear neighborhood propagation method based on interaction profile information combination (SLNPM-PC). The experimental results show that SLNPM-SC and SLNPM-PC predict lncRNA-miRNA interactions with higher accuracy compared with other state-of-the-art methods. The case studies demonstrate that SLNPM-SC and SLNPM-PC help to find novel lncRNA-miRNA interactions for given lncRNAs or miRNAs.ConclusionThe study reveals that known interactions bring the most important information for lncRNA-miRNA interaction prediction, and sequences of lncRNAs (miRNAs) also provide useful information. In conclusion, SLNPM-SC and SLNPM-PC are promising for lncRNA-miRNA interaction prediction.
BackgroundBacterial small non-coding RNAs (sRNAs) have emerged as important elements in diverse physiological processes, including growth, development, cell proliferation, differentiation, metabolic reactions and carbon metabolism, and attract great attention. Accurate prediction of sRNAs is important and challenging, and helps to explore functions and mechanism of sRNAs.ResultsIn this paper, we utilize a variety of sRNA sequence-derived features to develop ensemble learning methods for the sRNA prediction. First, we compile a balanced dataset and four imbalanced datasets. Then, we investigate various sRNA sequence-derived features, such as spectrum profile, mismatch profile, reverse compliment k-mer and pseudo nucleotide composition. Finally, we consider two ensemble learning strategies to integrate all features for building ensemble learning models for the sRNA prediction. One is the weighted average ensemble method (WAEM), which uses the linear weighted sum of outputs from the individual feature-based predictors to predict sRNAs. The other is the neural network ensemble method (NNEM), which trains a deep neural network by combining diverse features. In the computational experiments, we evaluate our methods on these five datasets by using 5-fold cross validation. WAEM and NNEM can produce better results than existing state-of-the-art sRNA prediction methods.ConclusionsWAEM and NNEM have great potential for the sRNA prediction, and are helpful for understanding the biological mechanism of bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.