BackgroundResearchers discover lncRNAs can act as decoys or sponges to regulate the behavior of miRNAs. Identification of lncRNA-miRNA interactions helps to understand the functions of lncRNAs, especially their roles in complicated diseases. Computational methods can save time and reduce cost in identifying lncRNA-miRNA interactions, but there have been only a few computational methods.ResultsIn this paper, we propose a sequence-derived linear neighborhood propagation method (SLNPM) to predict lncRNA-miRNA interactions. First, we calculate the integrated lncRNA-lncRNA similarity and the integrated miRNA-miRNA similarity by combining known lncRNA-miRNA interactions, lncRNA sequences and miRNA sequences. We consider two similarity calculation strategies respectively, namely similarity-based information combination (SC) and interaction profile-based information combination (PC). Second, the integrated lncRNA similarity-based graph and the integrated miRNA similarity-based graph are respectively constructed, and the label propagation processes are implemented on two graphs to score lncRNA-miRNA pairs. Finally, the weighted averages of their outputs are adopted as final predictions. Therefore, we construct two editions of SLNPM: sequence-derived linear neighborhood propagation method based on similarity information combination (SLNPM-SC) and sequence-derived linear neighborhood propagation method based on interaction profile information combination (SLNPM-PC). The experimental results show that SLNPM-SC and SLNPM-PC predict lncRNA-miRNA interactions with higher accuracy compared with other state-of-the-art methods. The case studies demonstrate that SLNPM-SC and SLNPM-PC help to find novel lncRNA-miRNA interactions for given lncRNAs or miRNAs.ConclusionThe study reveals that known interactions bring the most important information for lncRNA-miRNA interaction prediction, and sequences of lncRNAs (miRNAs) also provide useful information. In conclusion, SLNPM-SC and SLNPM-PC are promising for lncRNA-miRNA interaction prediction.
Objective: Computed tomography (CT) to material property conversion dominates proton range uncertainty, impacting the quality of proton treatment planning. Physics-based and machine learning-based methods have been investigated to leverage dual-energy CT (DECT) to predict proton ranges. Recent development includes physics-informed deep learning (DL) for material property inference. This paper aims to develop a framework to validate Monte Carlo dose calculation (MCDC) using CT-based material characterization models. Approach: The proposed framework includes two experiments to validate in vivo dose and water equivalent thickness (WET) distributions using anthropomorphic and porcine phantoms. Phantoms were irradiated using anteroposterior proton beams, and the exit doses and residual ranges were measured by MatriXX PT and multi-layer strip ionization chamber. Two pre-trained conventional and physics-informed residual networks (RN/PRN) were used for mass density inference from DECT. Additional two heuristic material conversion models using single-energy CT (SECT) and DECT were implemented for comparisons. The gamma index was used for dose comparisons with criteria of 3%/3mm (10% dose threshold). Main results: The phantom study showed that MCDC with PRN achieved mean gamma passing rates of 95.9% and 97.8% for the anthropomorphic and porcine phantoms. The rates were 86.0% and 79.7% for MCDC with the empirical DECT model. WET analyses indicated that the mean WET variations between measurement and simulation were -1.66 mm, -2.48 mm, and -0.06 mm for MCDC using a Hounsfield look-up table with SECT and empirical and PRN models with DECT. Validation experiments indicated that MCDC with PRN achieved consistent dose and WET distributions with measurement. Significance: The proposed framework can be used to identify the optimal CT-based material characterization model for MCDC to improve proton range uncertainty. The framework can systematically verify the accuracy of proton treatment planning, and it can potentially be implemented in the treatment room to be instrumental in online adaptive treatment planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.