The fracture-control matrix unit (F-CMU) is a special body present in low-permeability fractured reservoirs that can be distinguished by a fracture system and a matrix system. The imbibition phenomenon of the F-CMU provides the possibility for secondary development of low-permeability fractured reservoirs because of the driving force including capillary force and gravity. However, the F-CMU is difficult to obtain during the field core drilling, which has limited the development for laboratory dynamic imbibition tests. Therefore, a new F-CMU reconstruction method is proposed in this study. According to the geometry and parameters, combining laser engraving technology, the fracture system is designed and engraved. Then, the F-CMU is established using a three-dimensional (3D) printed material called polyvinyl alcohol (PVA) as fracture support material which has a faster dissolution rate and causes less damage to the core due to water being the solvent. Finally, the porosity, permeability, and wettability of the matrix system and the T2 spectra from nuclear magnetic resonance (NMR) before and after reconstruction are measured. In addition, numerical simulation calculation of F-CMU permeability is performed. The results show that the characteristic parameters of the matrix system hardly change, indicating low damage to the core. The reconstructed fracture system is found on the T2 spectra, and the fracture permeability is consistent by comparing with the experimental and numerical simulation results. The permeability of the fracture system is about 104 orders of magnitude of the matrix system, which is closer to real core and meets the requirements needed for dynamic permeability experiments.
Efficient ventilation systems will contribute to maintaining air quality in the tunnel. In order to improve ventilation performance in normal traffic condition, the 3D tunnel models were established according to the original design for the tunnel located in central plains of China. Based on the commercial CFD software Fluent 6.3 andk-εturbulence model, numerical simulations were carried out to study the patterns of jet flow and the optimization of fan combinations. It is found that the axial velocity profile obtained from numerical simulation agrees quite well with turbulent free jet theory although there is a little difference on the magnitude. The comparison of four combination modes under the condition of operating four fans indicates that the ventilation effectiveness is affected mainly by both the interval of adjacent groups of fans and the combination modes of operational fans. According to the simulation results, a novel combination mode which consists of a group double paralleled fans and two groups single fan is designed. The novel combination mode is regarded as the optimum combination mode with respect to maximizing air velocity in the tunnel. Compared to the traditional combination modes, it will increase the air velocity by 5.7%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.