Content-based image retrieval (CBIR) has been more and more important in the last decade, and the gap between high-level semantic concepts and low-level visual features hinders further performance improvement. The problem of online feature selection is critical to really bridge this gap. In this paper, we investigate online feature selection in the relevance feedback learning process to improve the retrieval performance of the region-based image retrieval system. Our contributions are mainly in three areas. 1) A novel feature selection criterion is proposed, which is based on the psychological similarity between the positive and negative training sets. 2) An effective online feature selection algorithm is implemented in a boosting manner to select the most representative features for the current query concept and combine classifiers constructed over the selected features to retrieve images. 3) To apply the proposed feature selection method in region-based image retrieval systems, we propose a novel region-based representation to describe images in a uniform feature space with real-valued fuzzy features. Our system is suitable for online relevance feedback learning in CBIR by meeting the three requirements: learning with small size training set, the intrinsic asymmetry property of training samples, and the fast response requirement. Extensive experiments, including comparisons with many state-of-the-arts, show the effectiveness of our algorithm in improving the retrieval performance and saving the processing time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.