These findings suggest that KDC and FBT could attenuate features of the metabolic syndrome in HFD-fed mice, which might be due to the modulation of gut microbiota by KDC and FBT.
An increasing amount of evidence suggests that the gut microbiota composition and structure contribute to the pathophysiology of metabolic syndrome (MS), which has been put forward as a new target in the treatment of diet-induced MS. In this work, we aimed to investigate effects of Fuzhuan brick tea polysaccharides (FBTPS) on MS and gut microbiota dysbiosis in high-fat diet (HFD) fed mice and to further investigate whether its attenuation of MS is related to the modulation of gut microbiota. The results showed that FBTPS intervention could significantly attenuate metabolic syndrome in HFD-induced mice. Based on results of sequencing, FBTPS treatment could increase the phylogenetic diversity of HFD-induced microbiota. FBTPS intervention could significantly restore the HFD-induced increases in relative abundances of Erysipelotrichaceae, Coriobacteriaceae, and Streptococcaceae. Spearman's correlation analysis showed that 44 key OTUs were negatively or positively associated with MS. Our results suggested that FBTPS could serve as a novel candidate for prevention of MS in association with the modulation of gut microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.