Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses.
Despite the potential efficacy of immune checkpoint blockade for effective treatment of cancer, this therapeutic modality is not generally curative, and only a fraction of patients respond. Combination approaches provide strategies to target multiple antitumor immune pathways to induce synergistic antitumor immunity. Here, a multi-combination immunotherapy, including photothermal therapy (PTT), indoleamine-2,3-dioxygenase (IDO) inhibition, and programmed cell death-ligand 1 (PD-L1) blockade, is introduced for inducing synergistic antitumor immunity. We designed a multifunctional IDO inhibitor (IDOi)-loaded reduced graphene oxide (rGO)-based nanosheets (IDOi/rGO nanosheets) with the properties to directly kill tumor cells under laser irradiation and in situ trigger antitumor immune response. In vivo experiments further revealed that the triggered immune response can be synergistically promoted by IDO inhibition and PD-L1 blockade; the responses included the enhancement of tumor-infiltrating lymphocytes, including CD45 + leukocytes, CD4 + T cells, CD8 + T cells, and NK cells; the inhibition of the immune suppression activity of regulator T cells (T regs ); and the production of INF-γ. We also demonstrate that the three combinations of PTT, IDO inhibition, and PD-L1 blockade can effectively inhibit the growth of both irradiated tumors and tumors in distant sites without PTT treatment. This work can be thought of as an important proof of concept to target multiple antitumor immune pathways to induce synergistic antitumor immunity.
In this work, a biodegradable and injectable in situ gel-forming controlled drug delivery system based on thermosensitive poly(e-caprolactone)-poly(ethylene glycol)-poly(e-caprolactone) (PCL-PEG-PCL) hydrogels was studied. A series of PCL-PEG-PCL triblock copolymers were synthesized and characterized by 1 H-NMR and gel permeation chromatography (GPC). Thermosensitivity of the PCL-PEG-PCL triblock copolymers was tested using the tube inversion method. The in vitro release behaviors of two model proteins, including bovine serum albumin (BSA) and horseradish peroxidase (HRP), from PCL-PEG-PCL hydrogels were studied in detail. The in vivo gel formation and degradation of the PCL-PEG-PCL triblock copolymers were also investigated in this study. The results showed that aqueous solutions of the synthesized PCL-PEG-PCL copolymers can form in situ gel rapidly after injection under physiological conditions. The PCL-PEG-PCL hydrogels showed the ability to control the release of incorporated BSA and HRP. The released HRP was confirmed to conserve its biological activity by specific enzymatic activity assay. The in vivo gel formation and degradation studies indicated that PCL-PEG-PCL copolymers hydrogels can sustain at least 45 days by subcutaneous injection. Therefore, owing to great thermosensitivity and biodegradability of these copolymers, PCL-PEG-PCL copolymers hydrogels show promise as an in situ gelforming controlled drug delivery system for therapeutic proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.