The link between total work performed above critical power (CP) and peripheral muscle fatigue during self-paced exercise is unknown. We investigated the influence of caffeine on the total work done above CP during a 4-km cycling time trial (TT) and the subsequent consequence on the development of central and peripheral fatigue. Nine cyclists performed three constant-load exercise trials to determine CP and two 4-km TTs ~75 min after oral caffeine (5 mg/kg) or cellulose (placebo) ingestion. Neuromuscular functions were assessed before and 50 min after supplementation and 1 min after TT. Oral supplementation alone had no effect on neuromuscular function ( P > 0.05). Compared with placebo, caffeine increased mean power output (~4%, P = 0.01) and muscle recruitment (as inferred by EMG, ~17%, P = 0.01) and reduced the time to complete the TT (~2%, P = 0.01). Work performed above CP during the caffeine trial (16.7 ± 2.1 kJ) was significantly higher than during the placebo (14.7 ± 2.1 kJ, P = 0.01). End-exercise decline in quadriceps twitch force (pre- to postexercise decrease in twitch force at 1 and 10 Hz) was more pronounced after caffeine compared with placebo (121 ± 13 and 137 ± 14 N vs. 146 ± 13 and 156 ± 11 N; P < 0.05). There was no effect of caffeine on central fatigue. In conclusion, caffeine increases muscle recruitment, which enables greater work performed above CP and higher end-exercise peripheral locomotor muscle fatigue. NEW & NOTEWORTHY The link between total work done above critical power and peripheral fatigue during a self-paced, high-intensity exercise is unclear. This study revealed that caffeine ingestion increases muscle recruitment, which enables greater work done above critical power and a greater degree of end-exercise decline in quadriceps twitch force during a 4-km cycling time trial. These findings suggest that caffeine increases performance at the expense of greater locomotor muscle fatigue.
We examined the effect of acute and chronic sprint interval training (SIT), with or without prior caffeine intake, on levels of exercise-induced inflammatory plasma cytokines [interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α]. Twenty physically-active men ingested either a placebo (n = 10) or caffeine (n = 10) 1 h before each SIT session(13-s × 30-s sprint/15 s of rest) during six training sessions (2 weeks). The early (before, immediately after, and 45 min after the exercise) and late (24 and 48 h after the exercise) cytokine and creatine kinase (CK) responses were analyzed for the first and last training sessions. Plasma IL-6 and IL-10 peaked 45 min after the exercise, and then returned to basal values within 24 h (p < 0.05) in both groups on both occasions (p > 0.05). On both occasions, and for both groups, plasma TNF-α increased from rest to immediately after the exercise and then decreased at 45 min before reaching values at or below basal levels 48 h after the exercise (p < 0.05). Serum CK increased from rest to 24 and 48 h post-exercise in the first training session (p < 0.05), but did not alter in the last training session for the PLA group (p > 0.05). Serum CK was unchanged in both the first and last training sessions for the CAF group (p > 0.05). Two weeks of SIT induced a late decrease in the IL-6/IL-10 ratio (p < 0.05) regardless of caffeine intake, suggesting an improved overall inflammatory status after training. In conclusion, a single session of SIT induces muscle damage that seems to be mitigated by caffeine intake. Two weeks of SIT improves the late SIT-induced muscle damage and inflammatory status, which seems to be independent of caffeine intake.
The influence of cyclist’s performance level on caffeine-induced increases in neuromuscular fatigue after a 4-km cycling TT was investigated. Nineteen cyclists performed a 4-km cycling TT one hour after ingesting caffeine (5 mg‧kg-1) or placebo (cellulose). Changes from baseline to post-exercise in voluntary activation (VA) and potentiated 1 Hz force twitch (Qtw,pot) were used as markers of central and peripheral fatigue, respectively. Participants were classified as “high-performing” (HP, n=8) or “low-performing” (LP, n=8) in accordance with their performance in placebo trial. Compared with placebo, caffeine increased the power, the anaerobic mechanical power and the anaerobic work, reducing the time to complete the trial for both groups (p<0.05). There was a group vs. supplement and group vs. supplement vs. trial interaction for Qtw,pot, where the post-exercise reduction was higher after caffeine compared with placebo in LP (Qtw,pot=–34±17 vs. –21±11%, p=0.02) but not in HP (Qtw,pot=–22±8 vs. –23±10%, p=0.64). There was no effect of caffeine on VA, but there was a group vs. trial interaction with lower post-exercise values in LP than in HP (p=0.03). Caffeine-induced improvement on 4-km cycling TT performance seems to be at the expense of greater locomotor muscle fatigue in low- but not in high-performing cyclists. BULLET POINTS -Caffeine improves exercise performance at the expense of a greater end-exercise peripheral fatigue in low-performing athletes. -Caffeine-induced improvement on exercise performance does not affect end-exercise peripheral fatigue in high-performing athletes. -High-performing athletes seems to have augmented tolerance to central fatigue during a high-intensity time-trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.