The Daily Operation Scheduling (DOS) gets new challenges while a large-scale of renewable energy is inserted into the power system. In addition to the operation, the power variability of these sources also causes a problem in the hourly pricing, represented here by Locational Marginal Pricing (LMP). Therefore, new applications, such as energy shifting, offer greater efficiency to the system, minimizing the negative effects caused by wind power curtailment (WPC). This paper shows the LMP formation in the DOS of the hydro-thermal-wind-photovoltaic power system with a battery energy storage system and the reduction of WPC. Here, the wind and photovoltaic power plants are designed to be dispatched, not mandatory, to be able to cut the generation, and the insertion of Distributed Generation is considered. Moreover, to solve the DOS problem, the interior-point method is used. Additionally, the DC optimal power flow, used to represent the DOS in addition to the representation of the electric grid, is modeled with an iterative approach. The analysis is made in an IEEE 24-bus system with data from Brazil. Lastly, the results of simulations are presented and discussed, demonstrating the effectiveness of the optimization to reduce the WPC, the total operation cost, and to provide the LMP curve.
A Programação Diária da Operação (PDO) adquire novos desafios conforme novas fontes renováveis são inseridas no sistema elétrico. Além da operação, a variabilidade na potência entregue por essas fontes também provoca um problema na formação de preços horários. Por conta disso, novas ferramentas que ofereçam maior eficiência têm sido propostas com intuito de minimizar os efeitos negativos provocados pela variabilidade dessas fontes. Este artigo apresenta um modelo de análise da PDO e do Locational Marginal Pricing (LMP) com a penetração da geração eólica em larga escala e o uso de Sistemas de Armazenamento de Energia a Baterias (SAEBs). Essa metodologia é ilustrada em uma aplicação no sistema teste PJM, destacando a comparação dos resultados com presença ou não da geração eólica e SAEBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.