We review the detectability of gravitational waves generated by oscillations excited during a phase transition from hadronic matter to deconfined quark-gluon matter in the core of a neutron star. Neutron star properties were computed using a Boguta and Bodmer's based model and the MIT bag model. The maximum energy available to excite mechanical oscillations into the star is estimated by energy difference between the configurations with and without a quark-gluon matter core. On basis of the planned sensitivity of present laser interferometers (VIRGO or LIGO I) and those of the next generation (LIGO II), the maximum volume to be probed by these experiments is determined. These results are used as an indication of the potential detectability of neutron stars as sources of gravitational waves. Our results indicate that the maximum distance probed by the detectors of the first generation is well beyond M31, whereas the second generation detectors will probably see phase transition events at distances two times longer, but certainly not yet attaining the Virgo cluster.
Here we present a status report of the first spherical antenna project equipped with a set of parametric transducers for gravitational detection. The Mario Schenberg, as it is called, started its commissioning phase at the Physics Institute of the University of São Paulo, in September 2006, under the full support of FAPESP. We have been testing the three preliminary parametric transducer systems in order to prepare the detector for the next cryogenic run, when it will be calibrated. We are also developing sapphire oscillators that will replace the current ones thereby providing better performance. We also plan to install eight transducers in the near future, six of which are of the two-mode type and arranged according to the truncated icosahedron configuration. The other two, which will be placed close to the sphere equator, will be mechanically non-resonant. In doing so, we want to verify that if the Schenberg antenna can become a wideband gravitational wave detector through the use of an ultra-high sensitivity non-resonant transducer constructed using the recent achievements of nanotechnology.
We study the generation of a stochastic gravitational wave (GW) background
produced by a population of neutron stars (NSs) which go over a hadron-quark
phase transition in its inner shells. We obtain, for example, that the NS phase
transition, in cold dark matter scenarios, could generate a stochastic GW
background with a maximum amplitude of $h_{\rm BG} \sim 10^{-24}$, in the
frequency band $\nu_{\rm{obs}} \simeq 20-2000 {\rm Hz}$ for stars forming at
redshifts of up to $z\simeq 20.$ We study the possibility of detection of this
isotropic GW background by correlating signals of a pair of Advanced LIGO
observatories.Comment: 17 pages, 5 figure
We briefly review the properties of quasi-normal modes of neutron stars and black holes. We analyze the consequences of a possible detection of such modes via the gravitational waves associated with them, specially addressing our study to the Brazilian spherical antenna, on which a possible detection would occur at 3.0-3.4 kHz. A question related to any putative gravitational wave detection concerns the source that produces it. We argue that, since the characteristic damping times for the gravitational waves of neutron stars and black holes are different, a detection can distinguish between them; and also distinguish the neutron star's oscillating modes. Moreover, since the source can be identified by its characteristic damping time, we are able to extract information about the neutron star or black hole. This information would lead, for example, to a strong constrain in the nuclear matter equation of state, namely, the compression modulus should be K ≈ 220M eV .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.