Biomarkers of inflammation, muscle damage, and oxidative stress after high-intensity exercise have been described previously; however, further understanding of their role in the postexercise recovery period is necessary. Because these markers have been implicated in cell signaling, they may be specifically related to the training adaptations induced by high-intensity exercise. Thus, a clear model showing their responses to exercise may be useful in characterizing the relative recovery status of an athlete. The purpose of this study was twofold: (a) to investigate the time course of markers of muscle damage and inflammation in the blood from 3 to 72 hours after combined training exercises and (b) to investigate indicators of oxidative stress and damage associated with increased reactive oxygen species production during high-intensity exercise in elite athletes. Nineteen male athletes performed a combination of high-intensity aerobic and anaerobic training exercises. Samples were acquired immediately before and at 3, 6, 12, 24, 48, and 72 hours after exercise. The appearance and clearance of creatine kinase and lactate dehydrogenase in the blood occurred faster than previous studies have reported. The neutrophil/lymphocyte ratio summarizes the mobilization of 2 leukocyte subpopulations in a single marker and may be used to predict the end of the postexercise recovery period. Further analysis of the immune response using serum cytokines indicated that high-intensity exercise performed by highly trained athletes only generated inflammation that was localized to the skeletal muscle. Biomarkers are not a replacement for performance tests, but when used in conjunction, they may offer a better indication of metabolic recovery status. Therefore, the use of biomarkers can improve a coach's ability to assess the recovery period after an exercise session and to establish the intensity of subsequent training sessions.
We compared the effects of 12 weeks of 3 different exercise types on type 2 diabetic (T2DM) male and female human subjects, randomly divided into 4 groups: aerobic training (AT; n = 11), strength training (ST; n = 10), combined training (CBT; n = 10), and no training (NT; n = 12). Metabolic control, anthropometric parameters, lipid and hematological profiles, kidney and liver function markers, hormones, antioxidant enzymes, and oxidative stress markers were assessed prior to and after the training programs. At baseline, fasting blood glucose and hemoglobin A(1c) in the ST group were higher than in the NT group; after the training, we no longer observed differences in these groups, suggesting an improvement on these parameters. In the AT group, catalase and superoxide dismutase activity, nitrite concentration, levels of sulfhydryl groups, and peak rate of oxygen consumption were elevated after the training (p < 0.05). No changes were observed in antioxidant enzymes or oxidative stress markers in the ST group. The levels of sulfhydryl groups diminished in the NT group (p < 0.01) and increased in the CBT group (p < 0.05). These data demonstrate that the AT program for the T2DM subjects provided important upregulation in antioxidant enzymes and increased nitric oxide bioavailability, which may help minimize oxidative stress and the development of the chronic complications of diabetes. We propose that the beneficial effects observed in the metabolic parameters of the ST group occurred in response to the poor baseline metabolic health n this group, and not necessarily in response to the training itself.
Saliva provides a convenient and noninvasive matrix for assessing specific physiological parameters, including some biomarkers of exercise. We investigated whether the total protein concentration of whole saliva (TPWS) would reflect the anaerobic threshold during an incremental exercise test. After a warm-up period, 13 nonsmoking men performed a maximum incremental exercise on a cycle ergometer. Blood and stimulated saliva were collected during the test. The TPWS anaerobic threshold (PAT) was determined using the Dmax method. The PAT was correlated with the blood lactate anaerobic threshold (AT; r = .93, p < .05). No significant difference (p = .16) was observed between PAT and AT. Thus, TPWS provides a convenient and noninvasive matrix for determining the anaerobic threshold during incremental exercise tests.
This study evaluated the effects of 2 different types of acute aerobic exercise on the osmotic stability of human erythrocyte membrane and on different hematological and biochemical variables that are associated with this membrane property. The study population consisted of 20 healthy and active men. Participants performed single sessions of 2 types of exercise. The first session consisted of 60 min of moderate-intensity continuous exercise (MICE). The second session, executed a week later, consisted of high-intensity interval exercise (HIIE) until exhaustion. The osmotic stability of the erythrocyte membrane was represented by the inverse of the salt concentration (1/H50) at the midpoint of the sigmoidal curve of dependence between the absorbance of hemoglobin and the NaCl concentration. The values of 1/H50 changed from 2.29±0.1 to 2.33±0.09 after MICE and from 2.30±0.08 to 2.23±0.12 after HIIE. During MICE mean corpuscular volume increased, probably due to in vivo lysis of older erythrocytes, with preservation of cells that were larger and more resistant to in vitro lysis. The study showed that a single bout of acute exercise affected erythrocyte stability, which increased after MICE and decreased after HIIE.
Four dogs with anticoagulant rodenticide toxicosis were treated with intravenous vitamin K1 in lieu of plasma transfusion due to client cost constraints. Two dogs experienced a suspected anaphylactoid reaction, necessitating cessation of the treatment in one dog. Prothrombin time was rechecked 1 h after treatment in the remaining three dogs and all results were within the normal reference range. All four dogs were discharged from hospital within 48 h of presentation. Intravenous vitamin K1 rapidly reverses the coagulopathic state in dogs with anticoagulant rodenticide toxicosis. It is a viable alternative therapy to plasma transfusion if circumstances preclude its use; however, patients must be monitored for anaphylactoid reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.