Even as modern computing systems allow the manipulation and distribution of massive amounts of information
In recent years, the microprocessor industry has embraced chip multiprocessors (CMPs), also known as multi-core architectures, as the dominant design paradigm. For existing and new applications to make effective use of CMPs, it is desirable that compilers automatically extract thread-level parallelism from single-threaded applications. DOALL is a popular automatic technique for looplevel parallelization employed successfully in the domains of scientific and numeric computing. While DOALL generally scales well with the number of iterations of the loop, its applicability is limited by the presence of loop-carried dependences. A parallelization technique with greater applicability is decoupled software pipelining (DSWP), which parallelizes loops even in the presence of loopcarried dependences. However, the scalability of DSWP is limited by the size of the loop body and the number of recurrences it contains, which are usually smaller than the loop iteration count.This work proposes a novel non-speculative compiler parallelization technique called parallel-stage decoupled software pipelining (PS-DSWP). The goal of PS-DSWP is to combine the applicability of DSWP with the scalability of DOALL parallelization. A key insight of PS-DSWP is that, after isolating the recurrences in their own stages in DSWP, portions of the loop suitable for DOALL parallelization may be exposed. PS-DSWP extends DSWP to benefit from these opportunities, utilizing multiple threads to execute the same stage of a DSWPed loop in parallel. This paper describes the PS-DSWP transformation in detail and discusses its implementation in a research compiler. PS-DSWP produces an average speedup of 114% (up to a maximum of 155%) with 6 threads on loops from a set of 5 applications. Our experiments also demonstrate that PS-DSWP achieves better scalability with the number of threads than DSWP.
Performance optimization for large-scale applications has recently become more important as computation continues to move towards data centers. Data-center applications are generally very large and complex, which makes code layout an important optimization to improve their performance. This has motivated recent investigation of practical techniques to improve code layout at both compile time and link time. Although post-link optimizers had some success in the past, no recent work has explored their benefits in the context of modern data-center applications.In this paper, we present BOLT, a post-link optimizer built on top of the LLVM framework. Utilizing samplebased profiling, BOLT boosts the performance of real-world applications even for highly optimized binaries built with both feedback-driven optimizations (FDO) and link-time optimizations (LTO). We demonstrate that post-link performance improvements are complementary to conventional compiler optimizations, even when the latter are done at a whole-program level and in the presence of profile information. We evaluated BOLT on both Facebook data-center workloads and open-source compilers. For data-center applications, BOLT achieves up to 8.0% performance speedups on top of profile-guided function reordering and LTO. For the GCC and Clang compilers, our evaluation shows that BOLT speeds up their binaries by up to 20.4% on top of FDO and LTO, and up to 52.1% if the binaries are built without FDO and LTO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.