IntroductionPreliminary studies have showed that the Incremental Shuttle Walking Test (ISWT) is a maximal test, however comparison between ISWT with the cardiopulmonary exercise test (CEPT) has not yet performed in the healthy woman population. Furthermore, there is no regression equation available in the current literature to predict oxygen peak consumption (VO2 peak). Thus, this study aimed to compare the ISWT with CEPT and to develop an equation to predict peak oxygen uptake (VO2 peak) in healthy women participants.MethodsFirst, the VO2 peak, respiratory exchange ratio (R peak), heart rate max (HR max) and percentage of predicted HR max (% predicted HR max) were evaluated in the CEPT and ISWT (n = 40). Then, an equation was developed to predict the VO2 peak (n = 54) and its validation was performed (n = 20).ResultsThere were no significant differences between the ISWT and CEPT of VO2 peak, HR max and % predicted HR max values (P>0.05), except for R peak measure in the ISWT (1.22 ± 0.13) and CEPT (1.18 ± 0.1) (P = 0.022). Therefore, both tests showed a moderate positive correlation of VO2 peak (r = 0.51; P = 0.0007), HR max (r = 0.65; P<0.0001) and R peak (r = 0.55; P = 0.0002) and the Bland-Altman analysis showed agreement of VO2 peak (bias = -0.14). The distance walked on ISWT and age explained 36.3% (R2 Adjusted = 0.363) of the variance in VO2 peak. The equation developed was VO2 peak (predicted) = 19.793 + (0.02 x distance walked)—(0.236 x age). There was no statistically significant difference between the VO2 peak measured directly and the predicted, and the Bland-Altman analysis showed agreement (bias = 1.5 ml/kg/min).ConclusionISWT is a maximal test showing similar results compared to the CEPT, and the predicted equation was valid and applicable for VO2 peak assessing in young adult healthy women.
Whole-body vibration (WBV) exercises have recently been introduced as a nonpharmacological therapeutic strategy for sarcopenic older people. The present study aimed to evaluate the effect of WBV exercise on hemodynamic parameters in sarcopenic older people. Forty older people, divided into groups of nonsarcopenic (NSG = 20) and sarcopenic (SG = 20), participated in the study and were cross randomized into two interventions of eight sets of 40 s each, these being squatting with WBV and squatting without WBV. Heart rate (HR), peak heart rate (peak HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), double product (DP), mean arterial pressure (MAP), and subjective perception of effort (SPE), were assessed at baseline, during, and after a single WBV session. The HR, peak HR, and DP variables were similar at baseline between groups. WBV exercise increased all the hemodynamic parameters both during and immediately after the intervention, in both groups (SG and NSG). The MAP values were similar at baseline between groups; however, in the NSG there was a significant increase during and immediately after the squatting with WBV intervention (p < 0.05). The HR behavior, in both groups, showed that there was an increase in HR after the first set of exercises with vibration and this increase was maintained until the final set. The absence of adverse effects of WBV exercise on the cardiovascular system and fatigue suggests this exercise modality is adequate and safe for sarcopenic older people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.