Abstract. Canopy architecture has been a major target in crop breeding for improved yields. Whether crop architectures in current elite crop cultivars can be modified for increased canopy CO 2 uptake rate (A c ) under elevated atmospheric CO 2 concentrations (C a ) is currently unknown. To study this question, we developed a new model of canopy photosynthesis, which includes three components: (i) a canopy architectural model; (ii) a forward ray tracing algorithm; and (iii) a steadystate biochemical model of C 3 photosynthesis. With this model, we demonstrated that the A c estimated from 'average' canopy light conditions is~25% higher than that from light conditions at individual points in the canopy. We also evaluated theoretically the influence of canopy architectural on A c under current and future C a in rice. Simulation results suggest that to gain an optimal A c for the examined rice cultivar, the stem height, leaf width and leaf angles can be manipulated to enhance canopy photosynthesis. This model provides a framework for designing ideal crop architectures to gain optimal A c under future changing climate conditions. A close linkage between canopy photosynthesis modelling and canopy photosynthesis measurements is required to fully realise the potential of such modelling approaches in guiding crop improvements.
In this study, we demonstrate that tumor-derived exosome-loaded dendritic cells can elicit a specific CD8(+) cytotoxic T-lymphocyte (CTL) response against autologous tumor cells in patients with malignant glioma. Exosomes were purified by ultrafiltration centrifugation and sucrose gradient ultracentrifugation. Exosomes had antigen-presenting molecules (MHC-I, HSP70), tumor antigen (MAGE-1) and adherent molecule (ICAM-1). After incubation with exosomes, the dendritic cells (DCs) could activate the T lymphocytes to become glioma-specialized CTL. The CTL had vigorous cytotoxicity to glioma cells as opposed to autologous lymphoblast cells. These data demonstrate that tumor exosome-loaded DC can be an effective tool in inducing glioma-specific CD8(+) CTLs able to kill autologous glioma cells in vitro. In conclusion, exosomes are a natural and new source of tumor-rejection antigens, opening up new avenues for immunization against glioma.
Background Spinal cord injury (SCI) favors a persistent pro-inflammatory macrophages/microglia-mediated response with only a transient appearance of anti-inflammatory phenotype of immune cells. However, the mechanisms controlling this special sterile inflammation after SCI are still not fully elucidated. It is known that damage-associated molecular patterns (DAMPs) released from necrotic cells after injury can trigger severe inflammation. High mobility group box 1(HMGB1), a ubiquitously expressed DNA binding protein, is an identified DAMP, and our previous study demonstrated that reactive astrocytes could undergo necroptosis and release HMGB1 after SCI in mice. The present study aimed to explore the effects and the possible mechanism of HMGB1on macrophages/microglia polarization, as well as the neuroprotective effects by HMGB1 inhibition after SCI. Methods In this study, the expression and the concentration of HMGB1 was determined by qRT-PCR, ELISA, and immunohistochemistry. Glycyrrhizin was applied to inhibit HMGB1, while FPS-ZM1 to suppress receptor for advanced glycation end products (RAGE). The polarization of macrophages/microglia in vitro and in vivo was detected by qRT-PCR, immunostaining, and western blot. The lesion area was detected by GFAP staining, while neuronal survival was examined by Nissl staining. Luxol fast blue (LFB) staining, DAB staining, and western blot were adopted to evaluate the myelin loss. Basso-Beattie-Bresnahan (BBB) scoring and rump-height Index (RHI) assay was applied to evaluate locomotor functional recovery. Results Our data showed that HMGB1 can be elevated and released from necroptotic astrocytes and HMGB1 could induce pro-inflammatory microglia through the RAGE-nuclear factor-kappa B (NF-κB) pathway. We further demonstrated that inhibiting HMGB1 or RAGE effectively decreased the numbers of detrimental pro-inflammatory macrophages/microglia while increased anti-inflammatory cells after SCI. Furthermore, our data showed that inhibiting HMGB1 or RAGE significantly decreased neuronal loss and demyelination, and improved functional recovery after SCI. Conclusions The data implicated that HMGB1-RAGE axis contributed to the dominant pro-inflammatory macrophages/microglia-mediated pro-inflammatory response, and inhibiting this pathway afforded neuroprotection for SCI. Thus, therapies designed to modulate immune microenvironment based on this cascade might be a prospective treatment for SCI.
Background and Purpose: The benefit of endovascular treatment (EVT) for large vessel occlusion in clinical practice in developing countries like China needs to be confirmed. The aim of the study was to determine whether the benefit of EVT for acute ischemic stroke in randomized trials could be generalized to clinical practice in Chinese population. Methods: We conducted a prospective registry of EVT at 111 centers in China. Patients with acute ischemic stroke caused by imaging-confirmed intracranial large vessel occlusion and receiving EVT were included. The primary outcome was functional independence at 90 days defined as a modified Rankin Scale score of 0 to 2. Outcomes of specific subgroups in the anterior circulation were reported and logistic regression was performed to predict the primary outcome. Results: Among the 1793 enrolled patients, 1396 (77.9%) had anterior circulation large vessel occlusion (median age, 66 [56–73] years) and 397 (22.1%) had posterior circulation large vessel occlusion (median age, 64 [55–72] years). Functional independence at 90 days was reached in 45% and 44% in anterior and posterior circulation groups, respectively. For anterior circulation population, underlying intracranial atherosclerotic disease was identified in 29% of patients, with higher functional independence at 90 days (52% versus 44%; P =0.0122) than patients without intracranial atherosclerotic disease. In the anterior circulation population, after adjusting for baseline characteristics, procedure details, and early outcomes, the independent predictors for functional independence at 90 days were age <66 years (odds ratio [OR], 1.733 [95% CI, 1.213–2.476]), time from onset to puncture >6 hours (OR, 1.536 [95% CI, 1.065–2.216]), local anesthesia (OR, 2.194 [95% CI, 1.325–3.633]), final modified Thrombolysis in Cerebral Infarction 2b/3 (OR, 2.052 [95% CI, 1.085–3.878]), puncture-to-reperfusion time ≤1.5 hours (OR, 1.628 [95% CI, 1.098–2.413]), and National Institutes of Health Stroke Scale score 24 hours after the procedure <11 (OR, 9.126 [95% CI, 6.222–13.385]). Conclusions: Despite distinct characteristics in the Chinese population, favorable outcome of EVT can be achieved in clinical practice in China. Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT03370939.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.