In this paper, we revisit traditional checkpointing and rollback recovery strategies, with a focus on silent data corruption errors. Contrarily to fail-stop failures, such latent errors cannot be detected immediately, and a mechanism to detect them must be provided. We consider two models: (i) errors are detected after some delays following a probability distribution (typically, an Exponential distribution); (ii) errors are detected through some verification mechanism. In both cases, we compute the optimal period in order to minimize the waste, i.e., the fraction of time where nodes do not perform useful computations. In practice, only a fixed number of checkpoints can be kept in memory, and the first model may lead to an irrecoverable failure. In this case, we compute the minimum period required for an acceptable risk. For the second model, there is no risk of irrecoverable failure, owing to the verification mechanism, but the corresponding overhead is included in the waste. Finally, both models are instantiated using realistic scenarios and application/architecture parameters.
International audienceA significant percentage of the computing capacity of large-scale platforms is wasted because of interferences incurred by multiple applications that access a shared parallel file system concurrently. One solution to handling I/O bursts in large-scale HPC systems is to absorb them at an intermediate storage layer consisting of burst buffers. However, our analysis of the Argonne's Mira system shows that burst buffers cannot prevent congestion at all times. Consequently, I/O performance is dramatically degraded, showing in some cases a decrease in I/O throughput of 67%. In this paper, we analyze the effects of interference on application I/O bandwidth and propose several scheduling techniques to mitigate congestion. We show through extensive experiments that our global I/O scheduler is able to reduce the effects of congestion, even on systems where burst buffers are used, and can increase the overall system throughput up to 56%. We also show that it outperforms current Mira I/O schedulers
This paper deals with the impact of fault prediction techniques on checkpointing strategies. We extend the classical first-order analysis of Young and Daly in the presence of a fault prediction system, characterized by its recall and its precision. In this framework, we provide an optimal algorithm to decide when to take predictions into account, and we derive the optimal value of the checkpointing period. These results allow to analytically assess the key parameters that impact the performance of fault predictors at very large scale.Comment: Supported in part by ANR Rescue. Published in Journal of Parallel and Distributed Computing. arXiv admin note: text overlap with arXiv:1207.693
We consider a task graph to be executed on a set of processors. We assume that the mapping is given, say by an ordered list of tasks to execute on each processor, and we aim at optimizing the energy consumption while enforcing a prescribed bound on the execution time. While it is not possible to change the allocation of a task, it is possible to change its speed. Rather than using a local approach such as backfilling, we consider the problem as a whole and study the impact of several speed variation models on its complexity. For continuous speeds, we give a closed-form formula for trees and series-parallel graphs, and we cast the problem into a geometric programming problem for general directed acyclic graphs. We show that the classical dynamic voltage and frequency scaling (DVFS) model with discrete modes leads to a NP-complete problem, even if the modes are regularly distributed (an important particular case in practice, which we analyze as the incremental model). On the contrary, the VDD-hopping model leads to a polynomial solution. Finally, we provide an approximation algorithm for the incremental model, which we extend for the general DVFS model.Comment: A two-page extended abstract of this work appeared as a short presentation in SPAA'2011, while the long version has been accepted for publication in "Concurrency and Computation: Practice and Experience
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.