In this work, we study the influence of inertia on the dynamics of neutrally buoyant spherical microbeads of varying diameter in a Pinch Flow Fractionation device. To that aim, we monitor their trajectory over an unprecedented wide range of flow rates and flow rate ratios. Our experimental results are supplemented by a depth-averaged 2D-model where the flow is described using the Navier-Stokes equation coupled with the shallow channel approximation and where particles trajectories are computed from Newton's second law of motion with a particle tracing model. Above a certain flow rate, we show that particles inertia enables them to cross streamlines in response to an abrupt change of direction. These streamline crossing events combined with the increasing effect of the inertial lift forces drive particles to deviate from the inertialess trajectory. The amplitude of the resulting inertial deviation increases both with the particles diameter and the total flow rate before reaching a plateau. Consequently, based on our numerical and experimental results, we determine the optimal flow conditions to shift the particles distribution to significantly enhance their size-based separation.
In soft robotics, the ability to generate advanced kinematics is a necessary step toward any more sophisticated tasks such as microobject manipulation, locomotion, or configuration changes. To this end, herein, a modular voxel‐based methodology adaptable to any scale and with any soft transducer is presented. The methodology is implemented at the micrometer scale with a one‐step fabrication process. An innovative gray‐tone lithography method using the two‐photon polymerization of photosensitive poly(N‐isopropylacrylamide) hydrogel is developed to print the voxels. Bending, compression, and twisting voxels are designed, printed, and characterized. A voxel consists of an isotropically shrinking active material reinforced adequately with a passive pattern. Each elementary voxel deforms along one degree of freedom and is a building block for superstructures able of advanced kinematics. With a side length of 40 μm, the bending voxel achieves a bending angle of 25º or curvature of . The compression voxel reaches an actuation strain of 40%, and the twisting voxel bends up to 18º. Advanced kinematics are demonstrated by printing complex structures composed of multiple elementary voxels. Herein, a foundation toward soft microrobots capable of performing complex tasks is constituted.
In this paper, we experimentally investigate the influence of the flow rate on the trajectory of ovoid and filamentous bacterial cells of E. coli in a low aspect ratio Pinch...
In this work, we study the influence of inertia on the dynamics of neutrally buoyant spherical microbeads of varying diameter in a Pinch Flow Fractionation device. To that aim, we monitor their trajectory over an unprecedented wide range of flow rates and flow rate ratios. Our experimental results are supplemented by a depth-averaged 2D-model where the flow is described using the Navier-Stokes equation coupled with the shallow channel approximation and where particles trajectories are computed from Newton’s second law of motion with a particle tracing model. Above a certain flow rate, we show that particles inertia enables them to cross streamlines in response to an abrupt change of direction. These streamline crossing events combined with the increasing effect of the inertial lift forces drive particles to deviate from the inertialess trajectory. The amplitude of the resulting inertial deviation increases both with the particles diameter and the total flow rate before reaching a plateau. Consequently, based on our numerical and experimental results, we determine the optimal flow conditions to shift the particles distribution in order to significantly enhance their size-based separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.