We introduce a new set of benchmark datasets derived from ACLED data for fine-grained event classification and compare the performance of various state-of-the-art machine learning models on these datasets, including SVM based on TF-IDF character n-grams and neural context-free embeddings (GLOVE and FASTTEXT) as well as deep learning-based BERT with its contextual embeddings. The best results in terms of micro (94.3-94.9%) and macro F 1 (86.0-88.9%) were obtained using BERT transformer, with simpler TF-IDF character n-gram based SVM being an interesting alternative. Further, we discuss the pros and cons of the considered benchmark models in terms of their robustness and the dependence of the classification performance on the size of training data.
This paper describes our participation to the Metonymy resolution at SemEval 2007 (task #8). In order to perform named entity metonymy resolution, we developed a hybrid system based on a robust parser that extracts deep syntactic relations combined with a non-supervised distributional approach, also relying on the relations extracted by the parser.
Since 2004 the European Commission's Joint Research Centre (JRC) has been analysing the online version of printed media in over twenty languages and has automatically recognised and compiled large amounts of named entities (persons and organisations) and their many name variants. The collected variants not only include standard spellings in various countries, languages and scripts, but also frequently found spelling mistakes or lesser used name forms, all occurring in real-life text (e.g. Benjamin/Binyamin/Bibi/Benyamín/Biniamin/Беньямин/ﺒﻨﻴﺎﻤﻴﻥ Netanyahu/Netanjahu/Nétanyahou/Netahny/Нетаньяху/.)ﻨﺘﻨﻴﺎﻫﻭ This entity name variant data, known as JRCNames, has been available for public download since 2011. In this article, we report on our efforts to render JRC-Names as Linked Data (LD), using the lexicon model for ontologies lemon. Besides adhering to Semantic Web standards, this new release goes beyond the initial one in that it includes titles found next to the names, as well as date ranges when the titles and the name variants were found. It also establishes links towards existing datasets, such as DBpedia and Talk-Of-Europe. As multilingual linguistic linked dataset, JRC-Names can help bridge the gap between structured data and natural languages, thus supporting large-scale data integration, e.g. cross-lingual mapping, and web-based content processing, e.g. entity linking. JRC-Names is publicly available through the dataset catalogue of the European Union's Open Data Portal.
We propose a system which builds, in a semi-supervised manner, a resource that aims at helping a NER system to annotate corpus-specific named entities. This system is based on a distributional approach which uses syntactic dependencies for measuring similarities between named entities. The specificity of the presented method however, is to combine a clique-based approach and a clustering technique that amounts to a soft clustering method. Our experiments show that the resource constructed by using this cliquebased clustering system allows to improve different NER systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.