We have performed 75As nuclear magnetic resonance measurements on aligned powders of the new LaFeAsO0.9F0.1 superconductor. In the normal state, we find a strong temperature dependence of the spin shift and Korringa behavior of the spin lattice relaxation rate. In the superconducting state, we find evidence for line nodes in the superconducting gap and spin-singlet pairing. Our measurements reveal a strong anisotropy of the spin lattice relaxation rate, which suggests that superconducting vortices contribute to the relaxation rate when the field is parallel to the c axis but not for the perpendicular direction.
The charge distribution in RFeAsO1-xFx (R=La,Sm) iron pnictides is probed using As nuclear quadrupole resonance. Whereas undoped and optimally doped or overdoped compounds feature a single charge environment, two charge environments are detected in the underdoped region. Spin-lattice relaxation measurements show their coexistence at the nanoscale. Together with the quantitative variations of the spectra with doping, they point to a local electronic order in the iron layers, where low- and high-doping-like regions would coexist. Implications for the interplay of static magnetism and superconductivity are discussed.
Co and Na NMR are used to probe the local susceptibility and charge state of the two Co sites of the Naordered orthorhombic Na 0.5 CoO 2 . Above . Furthermore, the electric field gradient at the Co site does not change at these transitions, indicating the absence of charge ordering. All these observations can be explained by two successive SDW induced by nestings of the Fermi Surface specific to the x=0.5 Na-ordering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.