A series of base-stabilized silylium species were synthesized and their reactivity toward CO 2 explored, yielding the characterization of a novel N/ Si + FLP-CO 2 adduct. These silicon species are active catalysts in the hydroboration of CO 2 to the methoxide level with 9-BBN, catecholborane (catBH), and pinacolborane (pinBH). Both experiments and DFT calculations highlight the role of the FLP-CO 2 adduct in the catalysis. Depending on the nature of the hydroborane reductant, two distinct mechanisms have been unveiled. While 9-BBN and catBH are able to reduce an intermediate FLP-CO 2 adduct, the hydroboration of CO 2 with pinBH follows a different and novel path where the B−H bond is activated by the silicon-based Lewis acid catalyst. In these mechanisms, the formation of a highly stabilized FLP-CO 2 adduct is found detrimental to the kinetics of the reaction.
The kinetics of the oxidative additions of haloheteroarenes HetX (X=I, Br, Cl) to [Pd(0) (PPh3 )2 ] (generated from [Pd(0) (PPh3 )4 ]) have been investigated in THF and DMF and the rate constants have been determined. In contrast to the generally accepted concerted mechanism, Hammett plots obtained for substituted 2-halopyridines and solvent effects reveal a reaction mechanism dependent on the halide X of HetX: an unprecedented SN Ar-type mechanism for X=Br or Cl and a classical concerted mechanism for X=I. These results are supported by DFT studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.