For remote-sensing applications such as spectra classification or identification, atmospheric correction constitutes a very important pre-processing step, especially in complex urban environments where a lot of phenomenons alter the shape of the signal. The objective of this article is to compare the efficiency of two atmo-spheric correction algorithms, COCHISE (atmospheric COrrection Code for Hyperspectral Images of remote-sensing SEnsors) and an empirical method, on hyperspectral data and for classification applications. Classification is carried out on several simulated spaceborne data sets with different spatial resolutions (from 1.6 to 9.6 m). Four classifiers are considered in the study: a k-means, a Support Vector Machine (SVM), and a sun/ shadow version of each of them, which processes sunlit and shadowed pixels separately. Results show that the most relevant atmospheric method for classification depends on the spatial resolution of the processed data set. Indeed, if the empirical method performs better on high-resolution data sets (up to 4%), its superiority fades out as the spatial resolution decreases, especially with the lower spatial reso-lution where COCHISE can be 10% more accurate than the empiri-cal method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.