Bi-intuitionistic logic is the result of adding the dual of intuitionistic implication to intuitionistic logic. In this note, we characterize the expressive power of this logic by showing that the first order formulas equivalent to translations of bi-intuitionistic propositional formulas are exactly those preserved under bi-intuitionistic directed bisimulations. The proof technique is originally due to Lindström and, in contrast to the most common proofs of this kind of result, it does not use the machinery of neither saturated models nor elementary chains.
In this paper we explore the following question: how weak can a logic be for Rosser’s essential undecidability result to be provable for a weak arithmetical theory? It is well known that Robinson’s Q is essentially undecidable in intuitionistic logic, and P. Hájek proved it in the fuzzy logic BL for Grzegorczyk’s variant of Q which interprets the arithmetic operations as nontotal nonfunctional relations. We present a proof of essential undecidability in a much weaker substructural logic and for a much weaker arithmetic theory, a version of Robinson’s R (with arithmetic operations also interpreted as mere relations). Our result is based on a structural version of the undecidability argument introduced by Kleene and we show that it goes well beyond the scope of the Boolean, intuitionistic, or fuzzy logic.
It is shown that propositional intuitionistic logic is the maximal (with respect to expressive power) abstract logic satisfying a certain topological property reminiscent of compactness, the Tarski union property and preservation under asimulations.
Under a proper translation, the languages of propositional (and quantified relevant logic) with an absurdity constant are characterized as the fragments of first order logic preserved under (world-object) relevant directed bisimulations. Furthermore, the properties of pointed models axiomatizable by sets of propositional relevant formulas have a purely algebraic characterization. Finally, a form of the interpolation property holds for the relevant fragment of first order logic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.