Iron is an essential nutrient for the survival and pathogenesis of bacteria, but relatively little is known regarding its transport and regulation in staphylococci. Based on the known sequences of ferric-uptake regulatory (fur) genes from several Gram-positive and Gram-negative bacteria, a fragment containing the fur homologue was cloned from a genomic library of Staphylococcus aureus RN450. Nucleotide sequence analysis of this fragment revealed the presence of a 447 bp ORF that encodes a putative 149 aa polypeptide with an apparent molecular mass of 17 kDa. A putative ferrichrome-uptake (fhu) operon, containing the conserved Fur-binding sequences (Fur box) in the promoter region, was also cloned from the same S. aureus library. To characterize the impact of Fur on the fhu operon, fur was cloned, overexpressed as a His-tagged protein and purified by Ni 2M -affinity column chromatography. The recombinant protein was digested with enterokinase to remove the His tag. Electrophoretic mobility-shift assays indicated that Fur binds to the promoter region of the fhu operon in the presence of divalent cations. Fur also interacted with the promoter region of the recently reported sir operon that has been proposed to constitute a siderophore-transport system in S. aureus. The DNase I-protection assay revealed that Fur specifically binds to the Fur box located in the promoter region of the fhu operon. The primer-extension reaction indicated that the transcription-start site of the fhu operon was located inside the Fur box. S. aureus fur partially complemented a fur N mutation in Bacillus subtilis. The data suggest that Fur regulates iron-transport processes in S. aureus.
Seven higher plant species (Allium cepa, Arabidopsis thaliana, Glycine max, Hordeum vulgaris. Tradescantia paludosa, Vicia faba, and Zea mays) were reviewed for their ability to detect genotoxicity of chemical agents under the U.S. Environmental Protection Agency (U.S. EPA) Gene-Tox program in the late 1970s. Six bioassays-Allium and Vicia root tip chromosome breaks, Tradescantia chromosome break, Tradescantia micronucleus, Tradescantia-stamen-hair mutation, and Arabidopsis-mutation bioassays- were established from four plant systems that are currently in use for detecting the genotoxicity of environmental agents. Under the Gene-Tox program, the Crepis capillaris-chromosome-aberration test was added to the existing six bioassays. The current review is limited to chemical agents that exhibit a positive response to any of these seven plant bioassays. From 158 articles reviewed, 84 chemicals were compiled in three categories: carcinogens, clastogens, and mutagens. As none of these plant bioassays can detect tumor initiation or cancerous growth, the chemicals were categorized as carcinogens based on their characteristics defined by the U.S. EPA's Superfund Priority 1 List and/or by the chemical listings of the Sigma and Aldrich Chemical Companies. Certain mutagens were categorized in the same manner in addition to the agents detected as mutagens by these plant bioassays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.