In many industries, managers face the problem of selling a given stock of items by a deadline. We investigate the problem of dynamically pricing such inventories when demand is price sensitive and stochastic and the firm's objective is to maximize expected revenues. Examples that fit this framework include retailers selling fashion and seasonal goods and the travel and leisure industry, which markets space such as seats on airline flights, cabins on vacation cruises, and rooms in hotels that become worthless if not sold by a specific time. We formulate this problem using intensity control and obtain structural monotonicity results for the optimal intensity (resp., price) as a function of the stock level and the length of the horizon. For a particular exponential family of demand functions, we find the optimal pricing policy in closed form. For general demand functions, we find an upper bound on the expected revenue based on analyzing the deterministic version of the problem and use this bound to prove that simple, fixed price policies are asymptotically optimal as the volume of expected sales tends to infinity. Finally, we extend our results to the case where demand is compound Poisson; only a finite number of prices is allowed; the demand rate is time varying; holding costs are incurred and cash flows are discounted; the initial stock is a decision variable; and reordering, overbooking, and random cancellations are allowed.dynamic pricing, inventory, yield management, intensity control, stochastic demand, optimal policies, heuristics, finite horizon, stopping times
A firm has inventories of a set of components that are used to produce a set of products. There is a finite horizon over which the firm can sell its products. Demand for each product is a stochastic point process with an intensity that is a function of the vector of prices for the products and the time at which these prices are offered. The problem is to price the finished products so as to maximize total expected revenue over the finite sales horizon. An upper bound on the optimal expected revenue is established by analyzing a deterministic version of the problem. The solution to the deterministic problem suggests two heuristics for the stochastic problem that are shown to be asymptotically optimal as the expected sales volume tends to infinity. Several applications of the model to network yield management are given. Numerical examples illustrate both the range of problems that can be modeled under this framework and the effectiveness of the proposed heuristics. The results provide several fundamental insights into the performance of yield management systems.
We study a class of assortment optimization problems where customers choose among the offered products according to the nested logit model. There is a fixed revenue associated with each product. The objective is to find an assortment of products to offer so as to maximize the expected revenue per customer. We show that the problem is polynomially solvable when the nest dissimilarity parameters of the choice model are less than one and the customers always make a purchase within the selected nest. Relaxing either of these assumptions renders the problem NP-hard. To deal with the NP-hard cases, we develop parsimonious collections of candidate assortments with worst-case performance guarantees. We also formulate a convex program whose optimal objective value is an upper bound on the optimal expected revenue. Thus, we can compare the expected revenue provided by an assortment with the upper bound on the optimal expected revenue to get a feel for the optimality gap of the assortment. By using this approach, our computational experiments test the performance of the parsimonious collections of candidate assortments that we develop.
Many industries face the problem of selling a fixed stock of items over a finite horizon. These industries include airlines selling seats before planes depart, hotels renting rooms before midnight, theaters selling seats before curtain time, and retailers selling seasonal goods such as air-conditioners or winter coats before the end of the season. Given a fixed number of seats, rooms, or coats, the objective for these industries is to maximize revenues in excess of salvage value. When demand is price sensitive and stochastic, pricing is an effective tool to maximize revenues. In this paper we address the problem of deciding the optimal timing of a single price change from a given initial price to either a given lower or higher second price. Under mild conditions, we show that it is optimal to decrease (resp., to increase) the initial price as soon as the time-to-go falls below (resp., above) a time threshold that depends on the number of yet unsold items.dynamic pricing, yield management, stopping times, intensity control, martingales, finite horizon, optimal policies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.