A previous study conducted in this laboratory revealed a decrease in total cholinesterase (total ChE) in the cerebral cortex, hippocampus and striatum in aged rats (24 months) of various strains, as compared with young animals (3 months). The purpose of the present experiments was to extend the study to other brain areas (hypothalamus, medulla-pons and cerebellum) and to assess whether this decrease was dependent on the reduction of either specific acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE) or both. By using ultracentrifugation on a sucrose gradient, the molecular forms of AChE were evaluated in all the brain areas of young and aged Sprague-Dawley rats. In young rats the regional distribution of total ChE and AChE varied considerably with respect to BuChE. The age-related loss of total ChE was seen in all areas. Although there was a reduction of AChE and, to somewhat lesser extent, of BuChE in the cerebral cortex, hippocampus, striatum, and hypothalamus (but not in the medulla-pons or the cerebellum), the ratio AChE/BuChE was not substantially modified by age. Two molecular forms of AChE, namely G4 (globular tetrameric) and G1 (monomeric), were detected in all the brain areas. Their distribution, expressed as G4/G1 ratio, varied in young rats from about 7.5 for the striatum to about 2.0 for the medulla-pons and cerebellum. The age-related changes consisted in a significant and selective loss of the enzymatic activity of G4 forms in the cerebral cortex, hippocampus, striatum, and hypothalamus, which resulted in a significant decrease of the G4/G1 ratio. No such changes were found in the medulla-pons or the cerebellum.(ABSTRACT TRUNCATED AT 250 WORDS)
Previous studies in this laboratory showed an age-related decline of acetylcholinesterase (AChE) activity in the cerebral cortex of rats. In the present study the age-related differences in enzymatic activity were evaluated in terms of individual molecular forms. Extracts containing total, soluble and membrane-bound AChE were analyzed both by ultracentrifugation in sucrose gradient and by non-denaturing gradient polyacrylamide gel electrophoresis. By ultracentrifugation two molecular forms, namely 10S and 4S (corresponding to tetrameric-G4 and monomeric-G1 forms, respectively) were separated in extracts of total and soluble AChE, while only 10S forms were present in extracts of membrane-bound AChE. Electrophoresis of soluble AChE extracts revealed slowly- and fast-migrating bands, grouped in two clusters of at least three bands each; membrane-bound AChE contained only a single slowly-migrating band. Electrophoresis of the single forms isolated by ultracentrifugation showed that slowly- and fast-migrating bands corresponded to G4 and G1 forms, respectively. Therefore, in soluble AChE no one-to-one relationship between charge- and size-isomers was observed; on the contrary, such relationship has been shown for membrane-bound AChE. This implies that soluble G4 forms and membrane-bound-G4 forms are electrophoretically different, being heterogeneous the former and homogeneous the latter. The age-related decline of total AChE, accompanied by a decrease of G4/G1 ratio, depended mainly on a decrease of membrane-bound AChE while soluble AChE and its G4/G1 ratio was unchanged. The qualitative pattern of charge isomers was not modified by aging.
Summary. A high prevalence of TT virus (TTV), a novel virus recently identi®ed in the serum of a patient with posttransfusion hepatitis of unknown aetiology, has been reported in blood donors worldwide. We investigated the presence of TTV DNA in several lots of blood products and in the corresponding plasma pools. In the process, we determined, from three sets of primers, the one which was most ef®cient in detecting the viral nucleic acid. This set ampli®es the region closest to the 3 H -end of the TTV genome which was proved, by sequence analysis, to be more conserved than the other two regions. Whereas all 10 intravenous immunoglobulin and 21 albumin batches were TTV negative, 4/5 factor VIII concentrates and 4/10 intramuscular immunoglobulin batches were TTV positive. A high prevalence of TTV DNA (70%) was found in the plasma pools that were collected from four different countries. These results con®rm the worldwide distribution of this virus and show that TTV is removed with a varying ef®ciency during the manufacture of blood products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.