Learning text representation is crucial for text classification and other language related tasks. There are a diverse set of text representation networks in the literature, and how to find the optimal one is a non-trivial problem. Recently, the emerging Neural Architecture Search (NAS) techniques have demonstrated good potential to solve the problem. Nevertheless, most of the existing works of NAS focus on the search algorithms and pay little attention to the search space. In this paper, we argue that the search space is also an important human prior to the success of NAS in different applications. Thus, we propose a novel search space tailored for text representation. Through automatic search, the discovered network architecture outperforms state-of-the-art models on various public datasets on text classification and natural language inference tasks. Furthermore, some of the design principles found in the automatic network agree well with human intuition.
Generative Adversarial Networks (GANs) are formulated as minimax game problems, whereby generators attempt to approach real data distributions by virtue of adversarial learning against discriminators. The intrinsic problem complexity poses the challenge to enhance the performance of generative networks. In this work, we aim to boost model learning from the perspective of network architectures, by incorporating recent progress on automated architecture search into GANs. To this end, we propose a fully differentiable search framework for generative adversarial networks, dubbed alphaGAN. The searching process is formalized as solving a bi-level minimax optimization problem, in which the outer-level objective aims for seeking a suitable network architecture towards pure Nash Equilibrium conditioned on the generator and the discriminator network parameters optimized with a traditional GAN loss in the inner level. The entire optimization performs a first-order method by alternately minimizing the two-level objective in a fully differentiable manner, enabling architecture search to be completed in an enormous search space. Extensive experiments on CIFAR-10 and STL-10 datasets show that our algorithm can obtain high-performing architectures only with 3-GPU hours on a single GPU in the search space comprised of approximate 2 × 10 11 possible configurations. We also provide a comprehensive analysis on the behavior of the searching process and the properties of searched architectures, which would benefit further research on architectures for generative models. Pretrained models and codes are available at https://github.com/yuesongtian/AlphaGAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.