Density functional theory calculations have been performed to investigate the detailed mechanism of the carbonyl hydrogenation catalyzed by the first well-defined bifunctional iron catalyst. The catalytic reaction proceeds by hydrogen transfer and dihydrogen activation. The hydrogen transfer reaction occurs via the bifunctional mechanism in which the two hydrogen atoms attached on the Fe and O of the catalyst are transferred to the oxygen and carbon atom of the carbonyl compound concertedly. Both the alcohol-mediated and nonalcohol-mediated dihydrogen activation processes are explored.
Rotational analyses have been carried out at high resolution for the 000-000 and 000-100 bands of the A (1)Pi(u)-X (1)Sigma(g) (+) transition of supersonic jet-cooled C(3). Two different spectra have been recorded for each band, using time gatings of 20-150 and 800-2300 ns. At the shorter time delay the spectra show only the lines observed by many previous workers. At the longer time delay many extra lines appear, some of which have been observed previously by [McCall et al.Chem. Phys. Lett. 374, 583 (2003)] in cavity ring-down spectra of jet-cooled C(3). Detailed analysis of these extra lines shows that at least two long-lived states perturb the A (1)Pi(u), 000 state. One of these appears to be a (3)Sigma(u) (-) vibronic state, which may possibly be a high vibrational level of the b (3)Pi(g) state, and the other appears to be a P = 1 state with a low rotational constant B. Our spectra also confirm the reassignment by McCall et al. of the R(0) line of the 000-000 band, which is consistent with the spectra recorded towards a number of stars that indicate the presence of C(3) in the interstellar medium. Fluorescence lifetimes have been measured for a number of upper-state rotational levels. The rotational levels of the A (1)Pi(u) state have lifetimes in the range of 230-190 ns, decreasing slightly with J; the levels of the perturbing states have much longer lifetimes, with some of them showing biexponential decays. An improved value has been obtained for the nu(1) vibrational frequency of the ground state, nu(1) = 1224.4933 +/- 0.0029 cm(-1).
Noble-gas hydrides HNgY are frequently described as a single ionic form (H-Ng)(+)Y(-). We apply natural bond orbital (NBO) and natural resonance theory (NRT) analyses to a series of noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I) to gain quantitative insight into the resonance bonding of these hypervalent molecules. We find that each of the studied species should be better represented as a resonance hybrid of three leading resonance structures, namely, H-Ng(+ -):Y (I), H:(- +)Ng-Y (II), and H^Y (III), in which the "ω-bonded" structures I and II arise from the complementary donor-acceptor interactions nY → σ*HNg and nH → σ*NgY, while the "long-bond" ([small sigma, Greek, circumflex]-type) structure III arises from the nNg → [small sigma, Greek, circumflex]*HY/[small sigma, Greek, circumflex]HY interaction. The bonding for all of the studied molecules can be well described in terms of the continuously variable resonance weightings of 3c/4e ω-bonding and [small sigma, Greek, circumflex]-type long-bonding motifs. Furthermore, we find that the calculated bond orders satisfy a generalized form of "conservation of bond order" that incorporates both ω-bonding and long-bonding contributions [viz., (bHNg + bNgY) + bHY = bω-bonding + blong-bonding = 1]. Such "conservation" throughout the title series implies a competitive relationship between ω-bonding and [small sigma, Greek, circumflex]-type long-bonding, whose variations are found to depend in a chemically reasonable manner on the electronegativity of Y and the outer valence-shell character of the central Ng atom. The calculated bond orders are also found to exhibit chemically reasonable correlations with bond lengths, vibrational frequencies, and bond dissociation energies, in accord with Badger's rule and related empirical relationships. Overall, the results provide electronic principles and chemical insight that may prove useful in the rational design of noble-gas hydrides of technological interest.
The resonance character of Cu/Ag/Au bonding is investigated in B⋅⋅⋅M-X (M=Cu, Ag, Au; X=F, Cl, Br, CH3, CF3; B=CO, H2O, H2S, C2H2, C2H4) complexes. The natural bond orbital/natural resonance theory results strongly support the general resonance-type three-center/four-electron (3c/4e) picture of Cu/Ag/Au bonding, B:M-X↔B(+) -M:X(-) , which mainly arises from hyperconjugation interactions. On the basis of such resonance-type bonding mechanisms, the ligand effects in the more strongly bound OC⋅⋅⋅M-X series are analyzed, and distinct competition between CO and the axial ligand X is observed. This competitive bonding picture directly explains why CO in OC⋅⋅⋅Au-CF3 can be readily replaced by a number of other ligands. Additionally, conservation of the bond order indicates that the idealized relationship bB⋅⋅⋅M +bMX =1 should be suitably generalized for intermolecular bonding, especially if there is additional partial multiple bonding at one end of the 3c/4e hyperbonded triad.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.