The intracellular iron transfer process is not well understood, and the identity of the iron transporter responsible for iron delivery to the secretory compartments remains elusive. In this study, we show Drosophila ZIP13 (Slc39a13), a presumed zinc importer, fulfills the iron effluxing role. Interfering with dZIP13 expression causes iron-rescuable iron absorption defect, simultaneous iron increase in the cytosol and decrease in the secretory compartments, failure of ferritin iron loading, and abnormal collagen secretion. dZIP13 expression in E. coli confers upon the host iron-dependent growth and iron resistance. Importantly, time-coursed transport assays using an iron isotope indicated a potent iron exporting activity of dZIP13. The identification of dZIP13 as an iron transporter suggests that the spondylocheiro dysplastic form of Ehlers–Danlos syndrome, in which hZIP13 is defective, is likely due to a failure of iron delivery to the secretory compartments. Our results also broaden our knowledge of the scope of defects from iron dyshomeostasis.DOI:
http://dx.doi.org/10.7554/eLife.03191.001
Huntington disease (HD) is a progressive neurodegenerative disorder caused by dominant polyglutamine (polyQ) expansion within the N terminus of huntingtin (Htt) protein. Abnormal metal accumulation in the striatum of HD patients has been reported for many years, but a causative relationship has not yet been established. Furthermore, if metal is indeed involved in HD, the underlying mechanism needs to be explored. Here using a Drosophila model of HD, wherein Htt exon1 with expanded polyQ (Htt exon1-polyQ) is introduced, we show that altered expression of genes involved in copper metabolism significantly modulates the HD progression. Intervention of dietary copper levels also modifies HD phenotypes in the fly. Copper reduction to a large extent decreases the level of oligomerized and aggregated Htt. Strikingly, substitution of two potential copper-binding residues of Htt, Met8 and His82, completely dissociates the copper-intensifying toxicity of Htt exon1-polyQ. Our results therefore indicate HD entails two levels of toxicity: the copper-facilitated protein aggregation as conferred by a direct copper binding in the exon1 and the copper-independent polyQ toxicity. The existence of these two parallel pathways converging into Htt toxicity also suggests that an ideal HD therapy would be a multipronged approach that takes both these actions into consideration.
Highlights d Transferrin 1 (Tsf1) participates in iron trafficking in Drosophila melanogaster d Tsf1 knockdown leads to iron accumulation in the gut but deficiency in the fat body d Fat body-derived Tsf1 is able to localize to the gut surface d Ferritin (Fer1HCH) knockdown could be rescued by Tsf1 knockdown
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Eigallocatechin‐3‐gallate (EGCG), the major polyphenol in green tea, is known to exert a beneficial effect on PD patients. Although some mechanisms were suggested to underlie this intervention, it remains unknown if the EGCG‐mediated protection was achieved by remodeling gut microbiota. In the present study, 0.1 mM or 0.5 mM EGCG was administered to the Drosophila melanogaster with PINK1 (PTEN induced putative kinase 1) mutations, a prototype PD model, and their behavioral performances, as well as neuronal/mitochondrial morphology (only for 0.5 mM EGCG treatment) were determined. According to the results, the mutant PINK1B9 flies exhibited dopaminergic, survival, and behavioral deficits, which were rescued by EGCG supplementation. Meanwhile, EGCG resulted in profound changes in gut microbial compositions in PINK1B9 flies, restoring the abundance of a set of bacteria. Notably, EGCG protection was blunted when gut microbiota was disrupted by antibiotics. We further isolated four bacterial strains from fly guts and the supplementation of individual Lactobacillus plantarum or Acetobacter pomorum strain exacerbated the neuronal and behavioral dysfunction of PD flies, which could not be rescued by EGCG. Transcriptomic analysis identified TotM as the central gene responding to EGCG or microbial manipulations. Genetic ablation of TotM blocked the recovery activity of EGCG, suggesting that EGCG‐mediated protection warrants TotM. Apart from familial form, EGCG was also potent in improving sporadic PD symptoms induced by rotenone treatment, wherein gut microbiota shared regulatory roles. Together, our results suggest the relevance of the gut microbiota‐TotM pathway in EGCG‐mediated neuroprotection, providing insight into indirect mechanisms underlying nutritional intervention of Parkinson’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.