In this work, the nanomechanical properties involving the indentation size effect (ISE) and yield strength of a surface-modified layer of 18CrNiMo7-6 steel after case hardening were investigated via nanoindentation experiments. The experimental results showed that the hardness increased with an increase in strain rate; the contact stiffness versus indentation depth curves take the form of upper convexity due to residual compressive stress relaxation. On the basis of the Ruiz-Moreno model, a modified model considering the cutoff parameter as a function of indentation depth was proposed. This model was able to better describe the ISE of the surface-modified layer. With the Hough transform error angle of 0.1° as the critical value (h0.1° is the corresponding depth), when h > h0.1°, the yield strength calculated by the Ma model started to disperse at the depth of h0.1°. These results provide useful insight into the local mechanical properties of 18CrNiMo7-6 steel after carburizing and quenching treatment.
The fatigue and wear characteristics of four different steel wheel materials are investigated in detail by using rolling contact fatigue and wear bench tests on a JD-1 apparatus, analyzing chemical composition and hardness, and performing profile analysis and micro-morphology analysis. The wear and fatigue behavior of one of the materials under different operation speeds is also investigated. The results show that the wear resistance of the materials has a positive correlation with their carbon content, while fatigue resistance has a negative correlation. Based on hardness analysis as a function of depth into the specimen, the thickness of layers with a steep hardness gradient has a negative correlation with the initial surface hardness in the tests using different materials. The hardness increments, however, have a positive correlation with initial surface hardness. The rolling tests on one material using different rotation speeds show that the hardness increments and the thickness of layers with a steep hardness gradient increase with the rotation speed. The analyses and experimental results demonstrate that two of the four materials exhibit good wear resistance and rolling contact fatigue resistance, making them suitable for either highspeed or heavy axle railroad operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.