A facile and efficient photoreduction method is employed to synthesize the composite of methylammonium lead iodide perovskite (MAPbI ) with reduced graphene oxide (rGO). This MAPbI /rGO composite is shown to be an outstanding visible-light photocatalyst for H evolution in aqueous HI solution saturated with MAPbI . Powder samples of MAPbI /rGO (100 mg) show a H evolution rate of 93.9 µmol h , which is 67 times faster than that of pristine MAPbI , under 120 mW cm visible-light (λ ≥ 420 nm) illumination, and the composite is highly stable showing no significant decrease in the catalytic activity after 200 h (i.e., 20 cycles) of repeated H evolution experiments. The electrochemiluminescence performance of MAPbI is investigated to explore the charge transfer process, to find that the photogenerated electrons in MAPbI are transferred to the rGO sites, where protons are reduced to H .
Electrogenerated chemiluminescence (ECL) of semiconductor quantum dots in aqueous solutions and its first sensing application were studied by depositing CdSe nanocrystals (NCs) on a paraffin-impregnated graphite electrode (PIGE). The CdSe nanocrystal thin film exhibited two ECL peaks at -1.20 (ECL-1) and -1.50 V (ECL-2) in pH 9.3, 0.1 M PBS during the cyclic sweep between 0 and -1.8 V at 20 mV s(-1). The electron-transfer reaction between individual electrochemically reduced nanocrystal species and oxidant coreactants such as H(2)O(2) and reduced dissolved oxygen led to ECL-1. When mass NCs packed densely in the film were reduced electrochemically, assembly of reduced nanocrystal species could react with coreactants to produce another ECL signal, ECL-2. ECL-1 showed higher sensitivity to the concentration of oxidant coreactants than ECL-2 and thus was used for ECL detection of coreactant, H(2)O(2). A linear response of ECL-1 to H(2)O(2) was observed in the concentration range of 2.5 x 10(-7)-6 x 10(-5) M with a detection limit of 1.0 x10(-7) M. The fabrication of 10 CdSe nanocrystal thin-film modified PIGEs displayed an acceptable reproducibility with a RSD of 1.18% obtained at H(2)O(2) level of 10 microM.
The behavior of luminol electrochemiluminescence (ECL) at a paraffin-impregnated graphite electrode (PIGE) at different applied potentials was studied. Five ECL peaks were observed at 0.31, 0.59, 1.09, 1.54, and -0.58 V versus SCE, respectively, being related to potential scan direction and ranges, N2, O2, pH of the solution, and KCl concentration. The emission spectra of various ECL peaks at different potentials showed that all ECL peaks were initiated by luminol reactions. X-ray diffraction demonstrated that a simple mixture was formed between graphite and paraffin. The fluorescence spectra on the surface of the PIGE suggested that certain groups on the graphite were oxidized when the positive potential was applied to the electrode. In the presence of O2, three main ECL peaks were obtained in 0.1 mol/L KCl at pH 12.2. The ECL peak at 0.59 V with a shoulder is likely due to the reaction of luminol radicals with O2 and further electrooxidation of luminol radicals. The ECL peak at 1.54 V was suggested to be due to the electrooxidation of OH- to HO2- at higher potential and then to O2-, which reacted with luminol to produce light emission. Moreover, the oxygen-containing functional groups formed by the oxidation of the surface of the graphite electrode might enhance the ECL. At -0.58 V, the dissolved oxygen in solution was reduced to HO2-, resulting in light emission. At a potential higher than 1.64 V, ClO- was formed, leading to a broad emission wave and enhancement of the ECL peak at -0.58 V upon the reversal scan. Under nitrogen atmosphere, an ECL peak appeared at 1.09 V. At this potential, OH- was oxidized to O2, followed by the reaction with luminol to generate light emission. At pH 13.2 or 0.5 mol/L KCl, the shoulder of the ECL peak at 0.59 V became an ECL peak at 0.31 V. The conversion of luminol radicals into excited 3-aminophthalate may undergo two routes. Under these conditions, two routes might proceed at a different rate to form another ECL peak. It is concluded that luminol ECL could be readily excited by various oxygen-containing species electrogenerated at different applied potentials. Three strong ECL peaks obtained at different potentials on the PIGE might be of a potential to improve analytical selectivity and sensitivity for the detection of some analytes.
The redox nature and electrochemiluminescence (ECL) of highly crystallized organometal halide perovskite CHNHPbBr nanocrystals (NCs) in aqueous medium were investigated for the first time. CHNHPbBr NCs could be electrochemically reduced to negative charge states by injecting electrons into the lowest unoccupied molecular orbitals and oxidized to positive charge states by removing electrons from the highest occupied molecular orbitals; charge transfer between NCs with positive and negative charge states could produce ECL. The redox sequence of CHNHPbBr NCs played an important role in the generation of charge-transfer-mediated ECL; transient ECL could be achieved only by electrochemically reducing positive-charged NCs in an annihilation route. A large redox current was unfavorable for ECL. Charge mobility within CHNHPbBr NCs had an important effect on ECL intensity in a co-reactant route, which is promising for photovoltaic and optoelectronic device applications. Importantly, the ECL spectra of CHNHPbBr NCs were almost identical to their photoluminescence spectra, with a maximum emission around 535 nm and full width at half-maximum around 25 nm; this might open a way to obtaining monochromatic ECL using highly crystallized NCs as emitters, which makes them promising for use in color-selective ECL analysis.
Copper indium sulfide (CuInS, CIS) nanocrystals (NCs) are a promising solution to the toxic issue of Cd- and Pb-based NCs. Herein, electrochemiluminescence (ECL) of CIS NCs in aqueous medium is investigated for the first time with l-glutathione and sodium citrate-stabilized water-soluble CIS/ZnS NCs as model. The CIS/ZnS NCs can be oxidized to hole-injected states via electrochemically injecting holes into valence band at 0.55 and 0.94 V (vs Ag/AgCl), respectively. The hole-injected state around 0.94 V can bring out efficient oxidative-reduction ECL with a similar color to Ru(bpy) in the presence of tri- n-propylamine (TPrA) and enable CIS/ZnS NCs promising ECL tags with l-glutathione as linker for labeling. The ECL of CIS/ZnS NCs/TPrA can be utilized to determine vascular endothelial growth factor (VEGF) from 0.10 to 1000 pM with the limit of detection at 0.050 pM (S/N = 3). Although the hole-injected state around 0.55 V is generated ahead of oxidation of TPrA and fails to bring out coreactant ECL, annihilation ECL proves that both hole-injected states generated, at 0.55 and 0.94 V, can be involved in electrochemical redox-induced radiative charge transfer by directly stepping CIS/ZnS NCs from electron-injecting potential to hole-injecting potential. CIS/ZnS NCs are promising nontoxic electrochemiluminophores with lowered ECL triggering potential around 0.55 V for less electrochemical interference upon the development of coreactant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.