Direct Position Determination (DPD) of coherent pulse trains using a single moving sensor is considered in this paper. Note that when a large observation window and relative maneuvering course between emitter and receiver both exist, the localization accuracy of Doppler frequency shift only based DPD will decline because of the noticeable Doppler frequency shift variations. To circumvent this problem, a Doppler frequency shift and Doppler rate based DPD approach using a single moving sensor is proposed in this paper. First, the signal model of the intercepted coherent pulse trains is established where the Doppler rate is taken into consideration. Then, the Maximum Likelihood based DPD cost function is given, and the Cramer–Rao lower bound (CRLB) on localization is derived whereafter. At last, the Monto Carlo simulations demonstrate that in one exemplary scenario the Doppler frequency shift variations are noticeable with a large observation window and the proposed method has superior performance to the DPD, which is only based on the Doppler frequency shift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.