a b s t r a c tThe several parameters affect the heat load of a building; geometry, construction, layout, climate and the users. These parameters are complex and interrelated. Comprehensive models are needed to understand relationships among the parameters that can handle non-linearities. The aim of this study is to predict heat load of existing buildings benefiting from width/length ratio, wall overall heat transfer coefficient, area/volume ratio, total external surface area, total window area/total external surface area ratio by using artificial neural networks and compare the results with a building energy simulation tool called KEP-IYTE-ESS developed by Izmir Institute of Technology. A back propagation neural network algorithm has been preferred and both simulation tools were applied to 148 residential buildings selected from 3 municipalities of Izmir-Turkey. Under the given conditions, a good coherence was observed between artificial neural network and building energy simulation tool results with a mean absolute percentage error of 5.06% and successful prediction rate of 0.977. The advantages of ANN model over the energy simulation software are observed as the simplicity, the speed of calculation and learning from the limited data sets.
a b s t r a c tBuildings account for 40% of total energy consumption in the European Union, yet at the same time they have considerable energy saving potentials. Historic buildings should be treated different from contemporary ones when it comes to energy improvements. The specifications which underline historical, sociocultural and architectural values require certain care during realization of energy saving implementations to sustain these values. The purpose of this study is to demonstrate how the energy efficient retrofitting in historic buildings should be managed in a transdisciplinary approach with a case study conducted on the historic building inİzmir-Turkey. A detailed building energy simulation tool was used to determine the impacts of energy efficient retrofits. The actual energy consumption of case building was based on the utility bills regarding electricity and heating fuel consumption. Building energy simulation tool was calibrated by comparing the measured and simulated indoor air temperatures and total energy consumptions. The inappropriate retrofits, which contradict to the cultural heritage values, were eliminated with a transdisciplinary approach. Later appropriate retrofits were gathered into three packages to evaluate their effects on the energy consumption. The results show that energy saving of more than 34% can be obtained without damaging the heritage values.© 2015 Elsevier B.V. All rights reserved. Nomenclature MBE mean bias error (%) RMSEroot-mean-squared-error (%) CV(RMSE) coefficient of variance of the root-mean-squarederror (%) t i simulated value o i measured value n number of observations A period average of the measured values * Corresponding author.
a b s t r a c tBy considering the energy efficiency legislations among the European Union, Turkey is responsible to provide regulations to comply for the latest European Energy Performance of Buildings Directive 2010/31/EC. New legislation in Turkey requires information about the evaluation of energy performance of existing buildings. This study aimed to determine energy performance of residential buildings in Izmir, regarding significant relationships between their performance and architectural configuration through statistical analysis. The focus was on the heating energy consumption due to Energy Efficiency Law (2007) and Building Energy Performance Regulation (2008), and Standard Assessment Method for Energy Performance of Dwellings (KEP-SDM). This energy performance assessment method was based on Turkish standard TS 825, and European standard EN ISO 13790. It is known that architectural configuration of buildings and design norms have impact on energy performance of buildings. However, emphasis was given on significant values of architectural considerations through certain area-based ratios. The levels of these ratios were matched with the levels of energy consumption. By this, the consideration was to take early-precautions against high energy consumptions in the early design stage and to enhance legislation by adding recommendations of concrete architectural values. These would assist to predict the level of energy performance in the early design phase. Findings would provide feedback information on the residential building stock inİzmir, Turkey.
Conservation of library collections requires an interdisciplinary approach. Dealing with the agents of deterioration via curative and preventive conservation methods has become a significant goal with new standards and norms in recent years. Preventive conservation aims indirect physical interventions such as climate control, good housekeeping and pest management. The aim of this study is to assess the degradation potential of indoor climate on valuable manuscripts that date back to 12th century, in a historic library in Tire-İzmir, Turkey. Through the study, first the library, namely Necip Paş a Library was continuously monitored by measurements of thermo-hygrometric parameters for one year. Then, the measured data were evaluated for the risk assessment based on the control classes of ASHRAE Chapter 21 to evaluate the mechanical, chemical and biological degradation risks. Finally, the conservation-oriented measures were proposed in order to keep the manuscripts under the better conditions.Results suggest that introducing a heating, ventilation and air-conditioning system to the building should be considered as the last option since natural hygrothermal behavior of the library gives reasonably sufficient evidences to prevent the manuscripts from degradations to some extent. Therefore, passive solutions should be given higher priorities not to disturb environmental past of the historic library.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.